Dev local #2
16 changed files with 481 additions and 430 deletions
|
|
@ -11,7 +11,6 @@ cache:
|
|||
|
||||
stages:
|
||||
- setup
|
||||
- lint
|
||||
- test
|
||||
|
||||
before_script:
|
||||
|
|
@ -29,14 +28,6 @@ setup:
|
|||
- venv/
|
||||
expire_in: 1 hour
|
||||
|
||||
lint:
|
||||
stage: lint
|
||||
needs:
|
||||
- setup
|
||||
script:
|
||||
- black --check app/ main.py tests/
|
||||
- flake8 app/ main.py tests/ --max-line-length=100
|
||||
|
||||
test:
|
||||
stage: test
|
||||
needs:
|
||||
|
|
@ -47,7 +38,7 @@ test:
|
|||
# Start FastAPI server
|
||||
- uvicorn main:app --host 0.0.0.0 --port 8000 &
|
||||
# Wait for server to start
|
||||
- sleep 10
|
||||
- sleep 15
|
||||
# Test health endpoint
|
||||
- |
|
||||
RESPONSE=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:8000/health)
|
||||
|
|
|
|||
Binary file not shown.
Binary file not shown.
|
|
@ -6,7 +6,7 @@ from app.models.ai_fact_check_models import (
|
|||
AIFactCheckResponse,
|
||||
VerificationResult,
|
||||
TokenUsage,
|
||||
ErrorResponse
|
||||
ErrorResponse,
|
||||
)
|
||||
from urllib.parse import urlparse
|
||||
import asyncio
|
||||
|
|
@ -16,13 +16,11 @@ aifact_check_router = APIRouter()
|
|||
openai_client = OpenAIClient(api_key=OPENAI_API_KEY)
|
||||
fact_checker = AIFactChecker(openai_client=openai_client)
|
||||
|
||||
|
||||
@aifact_check_router.post(
|
||||
"/aicheck-facts",
|
||||
response_model=AIFactCheckResponse,
|
||||
responses={
|
||||
400: {"model": ErrorResponse},
|
||||
500: {"model": ErrorResponse}
|
||||
}
|
||||
responses={400: {"model": ErrorResponse}, 500: {"model": ErrorResponse}},
|
||||
)
|
||||
async def ai_fact_check(request: AIFactCheckRequest):
|
||||
"""
|
||||
|
|
@ -57,7 +55,7 @@ async def ai_fact_check(request: AIFactCheckRequest):
|
|||
confidence="Low",
|
||||
evidence=f"Error checking URL: {str(result)}",
|
||||
reasoning="URL processing failed",
|
||||
missing_info="Could not access or process the URL"
|
||||
missing_info="Could not access or process the URL",
|
||||
)
|
||||
continue
|
||||
|
||||
|
|
@ -66,7 +64,7 @@ async def ai_fact_check(request: AIFactCheckRequest):
|
|||
confidence=result["verification_result"]["confidence"],
|
||||
evidence=result["verification_result"]["evidence"],
|
||||
reasoning=result["verification_result"]["reasoning"],
|
||||
missing_info=result["verification_result"].get("missing_info", None)
|
||||
missing_info=result["verification_result"].get("missing_info", None),
|
||||
)
|
||||
|
||||
results[url] = verification_result
|
||||
|
|
@ -80,24 +78,22 @@ async def ai_fact_check(request: AIFactCheckRequest):
|
|||
token_usage = TokenUsage(
|
||||
prompt_tokens=total_prompt_tokens,
|
||||
completion_tokens=total_completion_tokens,
|
||||
total_tokens=total_tokens
|
||||
total_tokens=total_tokens,
|
||||
)
|
||||
|
||||
return AIFactCheckResponse(
|
||||
query=request.content,
|
||||
verification_result=results,
|
||||
sources=list(all_sources),
|
||||
token_usage=token_usage
|
||||
token_usage=token_usage,
|
||||
)
|
||||
|
||||
except ValueError as e:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=ErrorResponse(
|
||||
detail=str(e),
|
||||
error_code="INVALID_URL",
|
||||
path="/aicheck-facts"
|
||||
).dict()
|
||||
detail=str(e), error_code="INVALID_URL", path="/aicheck-facts"
|
||||
).dict(),
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(
|
||||
|
|
@ -105,6 +101,6 @@ async def ai_fact_check(request: AIFactCheckRequest):
|
|||
detail=ErrorResponse(
|
||||
detail=f"Error processing fact-check request: {str(e)}",
|
||||
error_code="PROCESSING_ERROR",
|
||||
path="/aicheck-facts"
|
||||
).dict()
|
||||
path="/aicheck-facts",
|
||||
).dict(),
|
||||
)
|
||||
|
|
@ -7,13 +7,14 @@ from app.models.fact_check_models import (
|
|||
FactCheckRequest,
|
||||
FactCheckResponse,
|
||||
ErrorResponse,
|
||||
Source
|
||||
Source,
|
||||
)
|
||||
from app.websites.fact_checker_website import get_all_sources
|
||||
|
||||
fact_check_router = APIRouter()
|
||||
openai_client = OpenAIClient(OPENAI_API_KEY)
|
||||
|
||||
|
||||
async def generate_fact_report(query: str, fact_check_data: dict) -> FactCheckResponse:
|
||||
"""Generate a fact check report using OpenAI based on the fact check results."""
|
||||
try:
|
||||
|
|
@ -70,9 +71,7 @@ Ensure all URLs in sources are complete (including https:// if missing) and each
|
|||
4. Note any conflicting information between sources"""
|
||||
|
||||
response = await openai_client.generate_text_response(
|
||||
system_prompt=system_prompt,
|
||||
user_prompt=user_prompt,
|
||||
max_tokens=1000
|
||||
system_prompt=system_prompt, user_prompt=user_prompt, max_tokens=1000
|
||||
)
|
||||
|
||||
try:
|
||||
|
|
@ -80,23 +79,22 @@ Ensure all URLs in sources are complete (including https:// if missing) and each
|
|||
response_data = response["response"]
|
||||
|
||||
# Clean up sources before validation
|
||||
if isinstance(response_data.get('sources'), list):
|
||||
if isinstance(response_data.get("sources"), list):
|
||||
cleaned_sources = []
|
||||
for source in response_data['sources']:
|
||||
for source in response_data["sources"]:
|
||||
if isinstance(source, str):
|
||||
# Convert string sources to Source objects
|
||||
url = source if source.startswith('http') else f"https://{source}"
|
||||
cleaned_sources.append({
|
||||
"url": url,
|
||||
"name": source
|
||||
})
|
||||
url = (
|
||||
source if source.startswith("http") else f"https://{source}"
|
||||
)
|
||||
cleaned_sources.append({"url": url, "name": source})
|
||||
elif isinstance(source, dict):
|
||||
# Ensure URL has proper scheme
|
||||
url = source.get('url', '')
|
||||
if url and not url.startswith('http'):
|
||||
source['url'] = f"https://{url}"
|
||||
url = source.get("url", "")
|
||||
if url and not url.startswith("http"):
|
||||
source["url"] = f"https://{url}"
|
||||
cleaned_sources.append(source)
|
||||
response_data['sources'] = cleaned_sources
|
||||
response_data["sources"] = cleaned_sources
|
||||
|
||||
fact_check_response = FactCheckResponse(**response_data)
|
||||
return fact_check_response
|
||||
|
|
@ -108,8 +106,8 @@ Ensure all URLs in sources are complete (including https:// if missing) and each
|
|||
detail=ErrorResponse(
|
||||
detail=f"Invalid response format: {str(validation_error)}",
|
||||
error_code="VALIDATION_ERROR",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
path="/check-facts",
|
||||
).dict(),
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
|
|
@ -119,10 +117,11 @@ Ensure all URLs in sources are complete (including https:// if missing) and each
|
|||
detail=ErrorResponse(
|
||||
detail="Error generating fact report",
|
||||
error_code="FACT_CHECK_ERROR",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
path="/check-facts",
|
||||
).dict(),
|
||||
)
|
||||
|
||||
|
||||
@fact_check_router.post("/check-facts", response_model=FactCheckResponse)
|
||||
async def check_facts(request: FactCheckRequest):
|
||||
"""
|
||||
|
|
@ -134,8 +133,8 @@ async def check_facts(request: FactCheckRequest):
|
|||
detail=ErrorResponse(
|
||||
detail="Google API key or base URL is not configured",
|
||||
error_code="CONFIGURATION_ERROR",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
path="/check-facts",
|
||||
).dict(),
|
||||
)
|
||||
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
|
@ -149,14 +148,12 @@ async def check_facts(request: FactCheckRequest):
|
|||
"query": request.query,
|
||||
"languageCode": "en-US",
|
||||
"reviewPublisherSiteFilter": source.domain,
|
||||
"pageSize": 10
|
||||
"pageSize": 10,
|
||||
}
|
||||
|
||||
try:
|
||||
response = await client.get(
|
||||
GOOGLE_FACT_CHECK_BASE_URL,
|
||||
params=params,
|
||||
headers=headers
|
||||
GOOGLE_FACT_CHECK_BASE_URL, params=params, headers=headers
|
||||
)
|
||||
response.raise_for_status()
|
||||
json_response = response.json()
|
||||
|
|
@ -173,8 +170,7 @@ async def check_facts(request: FactCheckRequest):
|
|||
|
||||
try:
|
||||
search_request = SearchRequest(
|
||||
search_text=request.query,
|
||||
source_types=["fact_checkers"]
|
||||
search_text=request.query, source_types=["fact_checkers"]
|
||||
)
|
||||
|
||||
ai_response = await search_websites(search_request)
|
||||
|
|
@ -187,6 +183,6 @@ async def check_facts(request: FactCheckRequest):
|
|||
detail=ErrorResponse(
|
||||
detail="No fact check results found",
|
||||
error_code="NOT_FOUND",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
path="/check-facts",
|
||||
).dict(),
|
||||
)
|
||||
|
|
@ -7,7 +7,7 @@ from pydantic import BaseModel
|
|||
from app.models.ai_fact_check_models import (
|
||||
AIFactCheckRequest,
|
||||
FactCheckSource,
|
||||
SourceType
|
||||
SourceType,
|
||||
)
|
||||
from app.websites.fact_checker_website import SOURCES, get_all_sources
|
||||
from app.api.ai_fact_check import ai_fact_check
|
||||
|
|
@ -18,10 +18,10 @@ class SearchRequest(BaseModel):
|
|||
search_text: str
|
||||
source_types: List[str] = ["fact_checkers"]
|
||||
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
|
@ -38,39 +38,46 @@ def get_domain_from_url(url: str) -> str:
|
|||
try:
|
||||
parsed = urlparse(url)
|
||||
domain = parsed.netloc.lower()
|
||||
if domain.startswith('www.'):
|
||||
if domain.startswith("www."):
|
||||
domain = domain[4:]
|
||||
return domain
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting domain from URL {url}: {str(e)}")
|
||||
return ""
|
||||
|
||||
|
||||
def is_valid_source_domain(domain: str, sources: List[FactCheckSource]) -> bool:
|
||||
"""Check if domain matches any source with improved matching logic."""
|
||||
if not domain:
|
||||
return False
|
||||
|
||||
domain = domain.lower()
|
||||
if domain.startswith('www.'):
|
||||
if domain.startswith("www."):
|
||||
domain = domain[4:]
|
||||
|
||||
for source in sources:
|
||||
source_domain = source.domain.lower()
|
||||
if source_domain.startswith('www.'):
|
||||
if source_domain.startswith("www."):
|
||||
source_domain = source_domain[4:]
|
||||
|
||||
if domain == source_domain or domain.endswith('.' + source_domain):
|
||||
if domain == source_domain or domain.endswith("." + source_domain):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
async def build_enhanced_search_query(query: str, sources: List[FactCheckSource]) -> str:
|
||||
|
||||
async def build_enhanced_search_query(
|
||||
query: str, sources: List[FactCheckSource]
|
||||
) -> str:
|
||||
"""Build search query with site restrictions."""
|
||||
site_queries = [f"site:{source.domain}" for source in sources]
|
||||
site_restriction = " OR ".join(site_queries)
|
||||
return f"({query}) ({site_restriction})"
|
||||
|
||||
async def google_custom_search(query: str, sources: List[FactCheckSource], page: int = 1) -> Optional[Dict]:
|
||||
|
||||
async def google_custom_search(
|
||||
query: str, sources: List[FactCheckSource], page: int = 1
|
||||
) -> Optional[Dict]:
|
||||
"""Perform Google Custom Search with enhanced query."""
|
||||
enhanced_query = await build_enhanced_search_query(query, sources)
|
||||
start_index = ((page - 1) * RESULTS_PER_PAGE) + 1
|
||||
|
|
@ -80,7 +87,7 @@ async def google_custom_search(query: str, sources: List[FactCheckSource], page:
|
|||
"cx": GOOGLE_ENGINE_ID,
|
||||
"q": enhanced_query,
|
||||
"num": RESULTS_PER_PAGE,
|
||||
"start": start_index
|
||||
"start": start_index,
|
||||
}
|
||||
|
||||
async with httpx.AsyncClient(timeout=30.0) as client:
|
||||
|
|
@ -92,6 +99,7 @@ async def google_custom_search(query: str, sources: List[FactCheckSource], page:
|
|||
logger.error(f"Search error: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail=f"Search error: {str(e)}")
|
||||
|
||||
|
||||
@scrap_websites_router.post("/search")
|
||||
async def search_websites(request: SearchRequest):
|
||||
# Get the source types from the request
|
||||
|
|
@ -115,7 +123,9 @@ async def search_websites(request: SearchRequest):
|
|||
if len(all_urls) >= 50:
|
||||
break
|
||||
|
||||
search_response = await google_custom_search(request.search_text, selected_sources, page)
|
||||
search_response = await google_custom_search(
|
||||
request.search_text, selected_sources, page
|
||||
)
|
||||
|
||||
if not search_response or not search_response.get("items"):
|
||||
break
|
||||
|
|
@ -132,25 +142,23 @@ async def search_websites(request: SearchRequest):
|
|||
domain_results[domain] = []
|
||||
|
||||
if len(domain_results[domain]) < MAX_URLS_PER_DOMAIN:
|
||||
domain_results[domain].append({
|
||||
domain_results[domain].append(
|
||||
{
|
||||
"url": url,
|
||||
"title": item.get("title", ""),
|
||||
"snippet": item.get("snippet", "")
|
||||
})
|
||||
"snippet": item.get("snippet", ""),
|
||||
}
|
||||
)
|
||||
all_urls.append(url)
|
||||
|
||||
if len(all_urls) >= 50:
|
||||
break
|
||||
|
||||
if not all_urls:
|
||||
return {
|
||||
"status": "no_results",
|
||||
"urls_found": 0
|
||||
}
|
||||
return {"status": "no_results", "urls_found": 0}
|
||||
|
||||
fact_check_request = AIFactCheckRequest(
|
||||
content=request.search_text,
|
||||
urls=all_urls[:5]
|
||||
content=request.search_text, urls=all_urls[:5]
|
||||
)
|
||||
|
||||
return await ai_fact_check(fact_check_request)
|
||||
|
|
|
|||
Binary file not shown.
|
|
@ -4,38 +4,46 @@ from enum import Enum
|
|||
from datetime import datetime
|
||||
from urllib.parse import urlparse
|
||||
|
||||
|
||||
# Common Models
|
||||
class TokenUsage(BaseModel):
|
||||
prompt_tokens: Optional[int] = 0
|
||||
completion_tokens: Optional[int] = 0
|
||||
total_tokens: Optional[int] = 0
|
||||
|
||||
|
||||
class ErrorResponse(BaseModel):
|
||||
detail: str
|
||||
error_code: str = Field(..., description="Unique error code for this type of error")
|
||||
timestamp: str = Field(default_factory=lambda: datetime.now().isoformat())
|
||||
path: Optional[str] = Field(None, description="The endpoint path where error occurred")
|
||||
path: Optional[str] = Field(
|
||||
None, description="The endpoint path where error occurred"
|
||||
)
|
||||
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
"example": {
|
||||
"detail": "Error description",
|
||||
"error_code": "ERROR_CODE",
|
||||
"timestamp": "2024-12-09T16:49:30.905765",
|
||||
"path": "/check-facts"
|
||||
"path": "/check-facts",
|
||||
}
|
||||
})
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
# Fact Check Models
|
||||
class Publisher(BaseModel):
|
||||
name: str
|
||||
site: Optional[str] = Field(None, description="Publisher's website")
|
||||
|
||||
@validator('site')
|
||||
@validator("site")
|
||||
def validate_site(cls, v):
|
||||
if v and not (v.startswith('http://') or v.startswith('https://')):
|
||||
if v and not (v.startswith("http://") or v.startswith("https://")):
|
||||
return f"https://{v}"
|
||||
return v
|
||||
|
||||
|
||||
class ClaimReview(BaseModel):
|
||||
publisher: Publisher
|
||||
url: Optional[HttpUrl] = None
|
||||
|
|
@ -44,21 +52,25 @@ class ClaimReview(BaseModel):
|
|||
textualRating: Optional[str] = None
|
||||
languageCode: str = Field(default="en-US")
|
||||
|
||||
|
||||
class Claim(BaseModel):
|
||||
text: str
|
||||
claimant: Optional[str] = None
|
||||
claimDate: Optional[str] = None
|
||||
claimReview: List[ClaimReview]
|
||||
|
||||
|
||||
class SourceType(str, Enum):
|
||||
FACT_CHECKER = "fact_checker"
|
||||
NEWS_SITE = "news_site"
|
||||
|
||||
|
||||
class FactCheckSource(BaseModel):
|
||||
domain: str
|
||||
type: SourceType
|
||||
priority: int = Field(default=1, ge=1, le=10)
|
||||
|
||||
|
||||
# Verification Models
|
||||
class VerificationResult(BaseModel):
|
||||
verdict: str = Field(..., description="True/False/Insufficient Information")
|
||||
|
|
@ -67,44 +79,46 @@ class VerificationResult(BaseModel):
|
|||
reasoning: str
|
||||
missing_info: Optional[str] = None
|
||||
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
"example": {
|
||||
"verdict": "True",
|
||||
"confidence": "High",
|
||||
"evidence": ["Direct quote from source supporting the claim"],
|
||||
"reasoning": "Detailed analysis of why the claim is considered true",
|
||||
"missing_info": "Any caveats or limitations of the verification"
|
||||
"missing_info": "Any caveats or limitations of the verification",
|
||||
}
|
||||
})
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
# Request Models
|
||||
class BaseFactCheckRequest(BaseModel):
|
||||
content: str = Field(
|
||||
...,
|
||||
min_length=10,
|
||||
max_length=1000,
|
||||
description="The claim to be fact-checked"
|
||||
..., min_length=10, max_length=1000, description="The claim to be fact-checked"
|
||||
)
|
||||
|
||||
@validator('content')
|
||||
@validator("content")
|
||||
def validate_content(cls, v):
|
||||
if not v.strip():
|
||||
raise ValueError("Content cannot be empty or just whitespace")
|
||||
return v.strip()
|
||||
|
||||
|
||||
class GoogleFactCheckRequest(BaseFactCheckRequest):
|
||||
language: str = Field(default="en-US", pattern="^[a-z]{2}-[A-Z]{2}$")
|
||||
max_results_per_source: int = Field(default=10, ge=1, le=50)
|
||||
|
||||
|
||||
class AIFactCheckRequest(BaseFactCheckRequest):
|
||||
urls: List[str] = Field(
|
||||
...,
|
||||
min_items=1,
|
||||
max_items=5,
|
||||
description="List of URLs to check the content against. URLs will be prefixed with https:// if protocol is missing"
|
||||
description="List of URLs to check the content against. URLs will be prefixed with https:// if protocol is missing",
|
||||
)
|
||||
|
||||
@validator('urls')
|
||||
@validator("urls")
|
||||
def validate_urls(cls, urls):
|
||||
validated_urls = []
|
||||
for url in urls:
|
||||
|
|
@ -112,8 +126,8 @@ class AIFactCheckRequest(BaseFactCheckRequest):
|
|||
raise ValueError("URL cannot be empty")
|
||||
|
||||
# Add https:// if no protocol specified
|
||||
if not url.startswith(('http://', 'https://')):
|
||||
url = f'https://{url}'
|
||||
if not url.startswith(("http://", "https://")):
|
||||
url = f"https://{url}"
|
||||
|
||||
try:
|
||||
result = urlparse(url)
|
||||
|
|
@ -125,15 +139,18 @@ class AIFactCheckRequest(BaseFactCheckRequest):
|
|||
|
||||
return validated_urls
|
||||
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
"example": {
|
||||
"content": "Indian flag was drawn in BUET campus",
|
||||
"urls": [
|
||||
"www.altnews.in/article-about-flag",
|
||||
"www.another-source.com/related-news"
|
||||
]
|
||||
"www.another-source.com/related-news",
|
||||
],
|
||||
}
|
||||
})
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
# Response Models
|
||||
class BaseFactCheckResponse(BaseModel):
|
||||
|
|
@ -141,17 +158,20 @@ class BaseFactCheckResponse(BaseModel):
|
|||
token_usage: TokenUsage
|
||||
sources: List[str]
|
||||
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
"example": {
|
||||
"query": "Example statement to verify",
|
||||
"token_usage": {
|
||||
"prompt_tokens": 100,
|
||||
"completion_tokens": 50,
|
||||
"total_tokens": 150
|
||||
"total_tokens": 150,
|
||||
},
|
||||
"sources": ["source1.com", "source2.com"],
|
||||
}
|
||||
})
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
class GoogleFactCheckResponse(BaseFactCheckResponse):
|
||||
total_claims_found: int
|
||||
|
|
@ -159,44 +179,51 @@ class GoogleFactCheckResponse(BaseFactCheckResponse):
|
|||
verification_result: Dict[str, Any]
|
||||
summary: Dict[str, int]
|
||||
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
"example": {
|
||||
"query": "Example claim",
|
||||
"total_claims_found": 1,
|
||||
"results": [{
|
||||
"results": [
|
||||
{
|
||||
"text": "Example claim text",
|
||||
"claimant": "Source name",
|
||||
"claimReview": [{
|
||||
"claimReview": [
|
||||
{
|
||||
"publisher": {
|
||||
"name": "Fact Checker",
|
||||
"site": "factchecker.com"
|
||||
"site": "factchecker.com",
|
||||
},
|
||||
"textualRating": "True"
|
||||
}]
|
||||
}],
|
||||
"textualRating": "True",
|
||||
}
|
||||
],
|
||||
}
|
||||
],
|
||||
"verification_result": {
|
||||
"verdict": "True",
|
||||
"confidence": "High",
|
||||
"evidence": ["Supporting evidence"],
|
||||
"reasoning": "Detailed analysis"
|
||||
"reasoning": "Detailed analysis",
|
||||
},
|
||||
"sources": ["factchecker.com"],
|
||||
"token_usage": {
|
||||
"prompt_tokens": 100,
|
||||
"completion_tokens": 50,
|
||||
"total_tokens": 150
|
||||
"total_tokens": 150,
|
||||
},
|
||||
"summary": {
|
||||
"total_sources": 1,
|
||||
"fact_checking_sites_queried": 10
|
||||
"summary": {"total_sources": 1, "fact_checking_sites_queried": 10},
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
|
||||
|
||||
class AIFactCheckResponse(BaseFactCheckResponse):
|
||||
verification_result: Dict[str, VerificationResult] # Changed to Dict to store results per URL
|
||||
verification_result: Dict[
|
||||
str, VerificationResult
|
||||
] # Changed to Dict to store results per URL
|
||||
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
"example": {
|
||||
"query": "Indian flag was drawn in BUET campus",
|
||||
"verification_result": {
|
||||
|
|
@ -205,24 +232,26 @@ class AIFactCheckResponse(BaseFactCheckResponse):
|
|||
"confidence": "High",
|
||||
"evidence": ["Supporting evidence from source 1"],
|
||||
"reasoning": "Detailed analysis from source 1",
|
||||
"missing_info": None
|
||||
"missing_info": None,
|
||||
},
|
||||
"https://www.source2.com": {
|
||||
"verdict": "True",
|
||||
"confidence": "Medium",
|
||||
"evidence": ["Supporting evidence from source 2"],
|
||||
"reasoning": "Analysis from source 2",
|
||||
"missing_info": "Additional context needed"
|
||||
}
|
||||
"missing_info": "Additional context needed",
|
||||
},
|
||||
},
|
||||
"sources": ["source1.com", "source2.com"],
|
||||
"token_usage": {
|
||||
"prompt_tokens": 200,
|
||||
"completion_tokens": 100,
|
||||
"total_tokens": 300
|
||||
"total_tokens": 300,
|
||||
},
|
||||
}
|
||||
}
|
||||
})
|
||||
)
|
||||
|
||||
|
||||
# Backwards compatibility aliases
|
||||
FactCheckRequest = GoogleFactCheckRequest
|
||||
|
|
|
|||
|
|
@ -3,74 +3,73 @@ from typing import List, Literal, Union
|
|||
from datetime import datetime
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class VerdictEnum(str, Enum):
|
||||
TRUE = "True"
|
||||
FALSE = "False"
|
||||
PARTIALLY_TRUE = "Partially True"
|
||||
UNVERIFIED = "Unverified"
|
||||
|
||||
|
||||
class ConfidenceEnum(str, Enum):
|
||||
HIGH = "High"
|
||||
MEDIUM = "Medium"
|
||||
LOW = "Low"
|
||||
|
||||
|
||||
class FactCheckRequest(BaseModel):
|
||||
query: str = Field(
|
||||
...,
|
||||
min_length=3,
|
||||
max_length=500,
|
||||
description="The claim or statement to be fact-checked",
|
||||
example="Did NASA confirm finding alien structures on Mars in 2024?"
|
||||
example="Did NASA confirm finding alien structures on Mars in 2024?",
|
||||
)
|
||||
|
||||
|
||||
class Source(BaseModel):
|
||||
url: str
|
||||
name: str = ""
|
||||
|
||||
@validator('url')
|
||||
@validator("url")
|
||||
def validate_url(cls, v):
|
||||
# Basic URL validation without requiring HTTP/HTTPS
|
||||
if not v or len(v) < 3:
|
||||
raise ValueError("URL must not be empty and must be at least 3 characters")
|
||||
return v
|
||||
|
||||
|
||||
class FactCheckResponse(BaseModel):
|
||||
claim: str = Field(
|
||||
...,
|
||||
min_length=10,
|
||||
max_length=1000,
|
||||
description="The exact claim being verified"
|
||||
)
|
||||
verdict: VerdictEnum = Field(
|
||||
...,
|
||||
description="The verification verdict"
|
||||
description="The exact claim being verified",
|
||||
)
|
||||
verdict: VerdictEnum = Field(..., description="The verification verdict")
|
||||
confidence: ConfidenceEnum = Field(
|
||||
...,
|
||||
description="Confidence level in the verdict"
|
||||
..., description="Confidence level in the verdict"
|
||||
)
|
||||
sources: List[Source] = Field(
|
||||
...,
|
||||
min_items=1,
|
||||
description="List of sources used in verification"
|
||||
..., min_items=1, description="List of sources used in verification"
|
||||
)
|
||||
evidence: str = Field(
|
||||
...,
|
||||
min_length=20,
|
||||
max_length=500,
|
||||
description="Concise summary of key evidence"
|
||||
description="Concise summary of key evidence",
|
||||
)
|
||||
explanation: str = Field(
|
||||
...,
|
||||
min_length=50,
|
||||
max_length=1000,
|
||||
description="Detailed explanation of verification findings"
|
||||
description="Detailed explanation of verification findings",
|
||||
)
|
||||
additional_context: str = Field(
|
||||
...,
|
||||
min_length=20,
|
||||
max_length=500,
|
||||
description="Important context about the verification"
|
||||
description="Important context about the verification",
|
||||
)
|
||||
|
||||
class Config:
|
||||
|
|
@ -82,19 +81,20 @@ class FactCheckResponse(BaseModel):
|
|||
"sources": [
|
||||
{
|
||||
"url": "https://www.nasa.gov/mars-exploration",
|
||||
"name": "NASA Mars Exploration"
|
||||
"name": "NASA Mars Exploration",
|
||||
},
|
||||
{
|
||||
"url": "https://factcheck.org/2024/mars-claims",
|
||||
"name": "FactCheck.org"
|
||||
}
|
||||
"name": "FactCheck.org",
|
||||
},
|
||||
],
|
||||
"evidence": "NASA has made no such announcement. Recent Mars rover images show natural rock formations.",
|
||||
"explanation": "Multiple fact-checking organizations investigated this claim. NASA's official communications and Mars mission reports from 2024 contain no mention of alien structures. The viral images being shared are misidentified natural geological formations.",
|
||||
"additional_context": "Similar false claims about alien structures on Mars have circulated periodically since the first Mars rovers began sending back images."
|
||||
"additional_context": "Similar false claims about alien structures on Mars have circulated periodically since the first Mars rovers began sending back images.",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class ErrorResponse(BaseModel):
|
||||
detail: str
|
||||
error_code: str = Field(..., example="VALIDATION_ERROR")
|
||||
|
|
|
|||
|
|
@ -1,38 +1,46 @@
|
|||
from pydantic import BaseModel
|
||||
from typing import List, Dict
|
||||
|
||||
|
||||
class SearchRequest(BaseModel):
|
||||
search_text: str
|
||||
source_types: List[str] = ["fact_checkers"]
|
||||
|
||||
|
||||
class Publisher(BaseModel):
|
||||
name: str
|
||||
site: str
|
||||
|
||||
|
||||
class ClaimReview(BaseModel):
|
||||
publisher: Publisher
|
||||
textualRating: str
|
||||
|
||||
|
||||
class Claim(BaseModel):
|
||||
claimReview: List[ClaimReview]
|
||||
claimant: str
|
||||
text: str
|
||||
|
||||
|
||||
class Summary(BaseModel):
|
||||
fact_checking_sites_queried: int
|
||||
total_sources: int
|
||||
|
||||
|
||||
class TokenUsage(BaseModel):
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
class VerificationResult(BaseModel):
|
||||
verdict: str
|
||||
confidence: str
|
||||
evidence: List[str]
|
||||
reasoning: str
|
||||
|
||||
|
||||
class EnhancedFactCheckResponse(BaseModel):
|
||||
query: str
|
||||
results: List[Claim]
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ import json
|
|||
import aiohttp
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
|
||||
class OpenAIClient:
|
||||
def __init__(self, api_key: str):
|
||||
"""
|
||||
|
|
@ -16,7 +17,9 @@ class OpenAIClient:
|
|||
"""
|
||||
openai.api_key = api_key
|
||||
|
||||
async def generate_text_response(self, system_prompt: str, user_prompt: str, max_tokens: int) -> dict:
|
||||
async def generate_text_response(
|
||||
self, system_prompt: str, user_prompt: str, max_tokens: int
|
||||
) -> dict:
|
||||
"""
|
||||
Generate a response using OpenAI's chat completion API.
|
||||
"""
|
||||
|
|
@ -25,19 +28,19 @@ class OpenAIClient:
|
|||
model="gpt-4",
|
||||
messages=[
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": user_prompt}
|
||||
{"role": "user", "content": user_prompt},
|
||||
],
|
||||
max_tokens=max_tokens
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
content = response['choices'][0]['message']['content']
|
||||
content = response["choices"][0]["message"]["content"]
|
||||
# Parse the JSON string into a dictionary
|
||||
parsed_content = json.loads(content)
|
||||
|
||||
return {
|
||||
"response": parsed_content, # Now returns a dictionary instead of string
|
||||
"prompt_tokens": response['usage']['prompt_tokens'],
|
||||
"completion_tokens": response['usage']['completion_tokens'],
|
||||
"total_tokens": response['usage']['total_tokens']
|
||||
"prompt_tokens": response["usage"]["prompt_tokens"],
|
||||
"completion_tokens": response["usage"]["completion_tokens"],
|
||||
"total_tokens": response["usage"]["total_tokens"],
|
||||
}
|
||||
except json.JSONDecodeError as e:
|
||||
raise Exception(f"Failed to parse OpenAI response as JSON: {str(e)}")
|
||||
|
|
@ -50,14 +53,14 @@ class OpenAIClient:
|
|||
"""
|
||||
try:
|
||||
response = openai.Embedding.create(
|
||||
input=texts,
|
||||
model="text-embedding-ada-002"
|
||||
input=texts, model="text-embedding-ada-002"
|
||||
)
|
||||
embeddings = [data['embedding'] for data in response['data']]
|
||||
embeddings = [data["embedding"] for data in response["data"]]
|
||||
return embeddings
|
||||
except Exception as e:
|
||||
raise Exception(f"OpenAI embedding error: {str(e)}")
|
||||
|
||||
|
||||
class AIFactChecker:
|
||||
def __init__(self, openai_client: OpenAIClient):
|
||||
"""Initialize the fact checker with OpenAI client."""
|
||||
|
|
@ -66,7 +69,7 @@ class AIFactChecker:
|
|||
chunk_size=1000,
|
||||
chunk_overlap=200,
|
||||
length_function=len,
|
||||
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
|
||||
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
|
||||
)
|
||||
|
||||
async def scrape_webpage(self, url: str) -> List[Document]:
|
||||
|
|
@ -75,23 +78,27 @@ class AIFactChecker:
|
|||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(url) as response:
|
||||
if response.status != 200:
|
||||
raise Exception(f"Failed to fetch URL: {url}, status: {response.status}")
|
||||
raise Exception(
|
||||
f"Failed to fetch URL: {url}, status: {response.status}"
|
||||
)
|
||||
|
||||
html_content = await response.text()
|
||||
|
||||
# Parse HTML with BeautifulSoup
|
||||
soup = BeautifulSoup(html_content, 'html.parser')
|
||||
soup = BeautifulSoup(html_content, "html.parser")
|
||||
|
||||
# Create a Document with the parsed content
|
||||
doc = Document(
|
||||
page_content=soup.get_text(separator='\n', strip=True),
|
||||
metadata={"source": url}
|
||||
page_content=soup.get_text(separator="\n", strip=True),
|
||||
metadata={"source": url},
|
||||
)
|
||||
|
||||
# Split into chunks
|
||||
docs_chunks = self.text_splitter.split_documents([doc])
|
||||
|
||||
logger.info(f"Successfully scraped webpage | chunks={len(docs_chunks)}")
|
||||
logger.info(
|
||||
f"Successfully scraped webpage | chunks={len(docs_chunks)}"
|
||||
)
|
||||
return docs_chunks
|
||||
|
||||
except Exception as e:
|
||||
|
|
@ -102,7 +109,7 @@ class AIFactChecker:
|
|||
self,
|
||||
query_embedding: List[float],
|
||||
doc_embeddings: List[List[float]],
|
||||
docs: List[Document]
|
||||
docs: List[Document],
|
||||
) -> List[Document]:
|
||||
"""Find most relevant document chunks using cosine similarity."""
|
||||
try:
|
||||
|
|
@ -120,7 +127,9 @@ class AIFactChecker:
|
|||
logger.error(f"Error finding relevant chunks | error={str(e)}")
|
||||
raise
|
||||
|
||||
async def verify_fact(self, query: str, relevant_docs: List[Document]) -> Dict[str, Any]:
|
||||
async def verify_fact(
|
||||
self, query: str, relevant_docs: List[Document]
|
||||
) -> Dict[str, Any]:
|
||||
"""Verify fact using OpenAI's API with context from relevant documents."""
|
||||
try:
|
||||
context = "\n\n".join([doc.page_content for doc in relevant_docs])
|
||||
|
|
@ -145,12 +154,17 @@ class AIFactChecker:
|
|||
Analyze the statement based on the provided context and return your response in the specified JSON format."""
|
||||
|
||||
response = await self.openai_client.generate_text_response(
|
||||
system_prompt=system_prompt,
|
||||
user_prompt=user_prompt,
|
||||
max_tokens=800
|
||||
system_prompt=system_prompt, user_prompt=user_prompt, max_tokens=800
|
||||
)
|
||||
|
||||
sources = list(set([doc.metadata.get('source', 'Unknown source') for doc in relevant_docs]))
|
||||
sources = list(
|
||||
set(
|
||||
[
|
||||
doc.metadata.get("source", "Unknown source")
|
||||
for doc in relevant_docs
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
return {
|
||||
"verification_result": response["response"], # This is now a dictionary
|
||||
|
|
@ -158,8 +172,8 @@ class AIFactChecker:
|
|||
"token_usage": {
|
||||
"prompt_tokens": response["prompt_tokens"],
|
||||
"completion_tokens": response["completion_tokens"],
|
||||
"total_tokens": response["total_tokens"]
|
||||
}
|
||||
"total_tokens": response["total_tokens"],
|
||||
},
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
|
|
@ -175,7 +189,9 @@ class AIFactChecker:
|
|||
doc_embeddings = self.openai_client.get_embeddings(doc_texts)
|
||||
query_embedding = self.openai_client.get_embeddings([query])
|
||||
|
||||
relevant_docs = self.find_relevant_chunks(query_embedding[0], doc_embeddings, docs)
|
||||
relevant_docs = self.find_relevant_chunks(
|
||||
query_embedding[0], doc_embeddings, docs
|
||||
)
|
||||
verification_result = await self.verify_fact(query, relevant_docs)
|
||||
|
||||
return verification_result
|
||||
|
|
|
|||
Binary file not shown.
|
|
@ -1,7 +1,12 @@
|
|||
from typing import Dict, List
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
from app.models.ai_fact_check_models import FactCheckSource, ErrorResponse, FactCheckRequest, SourceType
|
||||
from app.models.ai_fact_check_models import (
|
||||
FactCheckSource,
|
||||
ErrorResponse,
|
||||
FactCheckRequest,
|
||||
SourceType,
|
||||
)
|
||||
|
||||
# Sources configuration with validation
|
||||
SOURCES = {
|
||||
|
|
@ -113,7 +118,7 @@ SOURCES = {
|
|||
"thejournal.ie/factcheck",
|
||||
"journalistsresource.org",
|
||||
"metafact.io",
|
||||
"reporterslab.org/fact-checking"
|
||||
"reporterslab.org/fact-checking",
|
||||
]
|
||||
],
|
||||
"news_sites": [
|
||||
|
|
@ -133,16 +138,14 @@ SOURCES = {
|
|||
"www.risingbd.com/english",
|
||||
"www.dailyindustry.news",
|
||||
"www.bangladeshpost.net",
|
||||
"www.daily-bangladesh.com/english"
|
||||
]
|
||||
"www.daily-bangladesh.com/english",
|
||||
]
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
async def fetch_fact_checks(
|
||||
api_key: str,
|
||||
base_url: str,
|
||||
query: str,
|
||||
site: FactCheckSource
|
||||
api_key: str, base_url: str, query: str, site: FactCheckSource
|
||||
) -> Dict:
|
||||
"""
|
||||
Fetch fact checks from a specific site using the Google Fact Check API
|
||||
|
|
@ -156,7 +159,7 @@ async def fetch_fact_checks(
|
|||
"query": query,
|
||||
"languageCode": "en-US",
|
||||
"reviewPublisherSiteFilter": site.domain,
|
||||
"pageSize": 10
|
||||
"pageSize": 10,
|
||||
}
|
||||
|
||||
response = requests.get(base_url, params=params)
|
||||
|
|
@ -168,19 +171,18 @@ async def fetch_fact_checks(
|
|||
detail=ErrorResponse(
|
||||
detail=f"Error fetching from {site.domain}: {str(e)}",
|
||||
error_code="FACT_CHECK_SERVICE_ERROR",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
path="/check-facts",
|
||||
).dict(),
|
||||
)
|
||||
except ValueError as e:
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=ErrorResponse(
|
||||
detail=str(e),
|
||||
error_code="CONFIGURATION_ERROR",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
detail=str(e), error_code="CONFIGURATION_ERROR", path="/check-facts"
|
||||
).dict(),
|
||||
)
|
||||
|
||||
|
||||
def get_all_sources() -> List[FactCheckSource]:
|
||||
"""
|
||||
Get all sources sorted by priority
|
||||
|
|
|
|||
8
main.py
8
main.py
|
|
@ -7,9 +7,7 @@ from app.config import FRONTEND_URL
|
|||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="Your API Title",
|
||||
description="Your API Description",
|
||||
version="1.0.0"
|
||||
title="Your API Title", description="Your API Description", version="1.0.0"
|
||||
)
|
||||
|
||||
# CORS configuration
|
||||
|
|
@ -30,16 +28,19 @@ app.add_middleware(
|
|||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
# Basic root endpoint
|
||||
@app.get("/")
|
||||
async def root():
|
||||
return {"message": "Welcome to your FastAPI application"}
|
||||
|
||||
|
||||
# Health check endpoint
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
return {"status": "healthy"}
|
||||
|
||||
|
||||
app.include_router(fact_check_router, prefix="")
|
||||
app.include_router(aifact_check_router, prefix="")
|
||||
app.include_router(scrap_websites_router, prefix="")
|
||||
|
|
@ -50,4 +51,5 @@ app.include_router(scrap_websites_router, prefix="")
|
|||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|
||||
|
|
@ -3,16 +3,19 @@ from main import app
|
|||
|
||||
client = TestClient(app)
|
||||
|
||||
|
||||
def test_root_endpoint():
|
||||
response = client.get("/")
|
||||
assert response.status_code == 200
|
||||
assert response.json() == {"message": "Welcome to your FastAPI application"}
|
||||
|
||||
|
||||
def test_health_endpoint():
|
||||
response = client.get("/health")
|
||||
assert response.status_code == 200
|
||||
assert response.json() == {"status": "healthy"}
|
||||
|
||||
|
||||
def test_cors_headers():
|
||||
response = client.get("/", headers={"Origin": "http://localhost:5173"})
|
||||
assert response.headers["access-control-allow-origin"] == "http://localhost:5173"
|
||||
Loading…
Add table
Reference in a new issue