Compare commits
1 commit
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8aae0d18da |
28 changed files with 605 additions and 1367 deletions
4
.flake8
4
.flake8
|
|
@ -1,4 +0,0 @@
|
|||
[flake8]
|
||||
max-line-length = 100
|
||||
exclude = .git,__pycache__,dist,*.egg-info,venv
|
||||
extend-ignore = E203
|
||||
42
.gitignore
vendored
42
.gitignore
vendored
|
|
@ -1,42 +1,4 @@
|
|||
# Environment
|
||||
env/
|
||||
env
|
||||
.env
|
||||
venv/
|
||||
ENV/
|
||||
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
.Python
|
||||
*.so
|
||||
.pytest_cache/
|
||||
.coverage
|
||||
.coverage.*
|
||||
coverage.xml
|
||||
*.cover
|
||||
htmlcov/
|
||||
|
||||
# IDEs and editors
|
||||
.idea/
|
||||
.vscode/
|
||||
*.swp
|
||||
*.swo
|
||||
*~
|
||||
|
||||
# Project specific
|
||||
test.py
|
||||
*.log
|
||||
.pip-cache/
|
||||
|
||||
# Temporary files
|
||||
*.tmp
|
||||
.DS_Store
|
||||
|
||||
# Distribution / packaging
|
||||
dist/
|
||||
build/
|
||||
*.egg-info/
|
||||
|
||||
# Docker
|
||||
.docker/
|
||||
__pycache__
|
||||
|
|
@ -1,52 +0,0 @@
|
|||
image: python:3.10-slim
|
||||
|
||||
variables:
|
||||
PIP_CACHE_DIR: "$CI_PROJECT_DIR/.pip-cache"
|
||||
PYTHONPATH: "$CI_PROJECT_DIR"
|
||||
|
||||
cache:
|
||||
paths:
|
||||
- .pip-cache
|
||||
- venv/
|
||||
|
||||
stages:
|
||||
- setup
|
||||
- test
|
||||
|
||||
before_script:
|
||||
- apt-get update
|
||||
- apt-get install -y curl
|
||||
- python --version
|
||||
- pip install virtualenv
|
||||
- virtualenv venv
|
||||
- source venv/bin/activate
|
||||
|
||||
setup:
|
||||
stage: setup
|
||||
script:
|
||||
- pip install --no-cache-dir -r requirements.txt
|
||||
artifacts:
|
||||
paths:
|
||||
- venv/
|
||||
expire_in: 1 hour
|
||||
|
||||
test:
|
||||
stage: test
|
||||
needs:
|
||||
- setup
|
||||
script:
|
||||
# Run all tests
|
||||
- pytest tests/ -v
|
||||
# Start FastAPI server
|
||||
- uvicorn main:app --host 0.0.0.0 --port 8000 &
|
||||
# Wait for server to start
|
||||
- sleep 15
|
||||
# Test health endpoint
|
||||
- |
|
||||
RESPONSE=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:8000/health)
|
||||
if [ "$RESPONSE" = "200" ]; then
|
||||
echo "✅ Health check passed"
|
||||
else
|
||||
echo "❌ Health check failed with status $RESPONSE"
|
||||
exit 1
|
||||
fi
|
||||
|
|
@ -1,8 +0,0 @@
|
|||
|
||||
FROM python:3.12
|
||||
COPY requirements.txt requirements.txt
|
||||
RUN pip install --upgrade pip
|
||||
RUN pip install -r requirements.txt
|
||||
COPY . .
|
||||
EXPOSE 8000
|
||||
ENTRYPOINT ["gunicorn", "main:app", "--workers", "4", "--timeout", "90", "--worker-class", "uvicorn.workers.UvicornWorker", "--bind", "0.0.0.0:8000"]
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
|
@ -6,7 +6,7 @@ from app.models.ai_fact_check_models import (
|
|||
AIFactCheckResponse,
|
||||
VerificationResult,
|
||||
TokenUsage,
|
||||
ErrorResponse,
|
||||
ErrorResponse
|
||||
)
|
||||
from urllib.parse import urlparse
|
||||
import asyncio
|
||||
|
|
@ -16,11 +16,13 @@ aifact_check_router = APIRouter()
|
|||
openai_client = OpenAIClient(api_key=OPENAI_API_KEY)
|
||||
fact_checker = AIFactChecker(openai_client=openai_client)
|
||||
|
||||
|
||||
@aifact_check_router.post(
|
||||
"/aicheck-facts",
|
||||
response_model=AIFactCheckResponse,
|
||||
responses={400: {"model": ErrorResponse}, 500: {"model": ErrorResponse}},
|
||||
responses={
|
||||
400: {"model": ErrorResponse},
|
||||
500: {"model": ErrorResponse}
|
||||
}
|
||||
)
|
||||
async def ai_fact_check(request: AIFactCheckRequest):
|
||||
"""
|
||||
|
|
@ -55,7 +57,7 @@ async def ai_fact_check(request: AIFactCheckRequest):
|
|||
confidence="Low",
|
||||
evidence=f"Error checking URL: {str(result)}",
|
||||
reasoning="URL processing failed",
|
||||
missing_info="Could not access or process the URL",
|
||||
missing_info="Could not access or process the URL"
|
||||
)
|
||||
continue
|
||||
|
||||
|
|
@ -64,7 +66,7 @@ async def ai_fact_check(request: AIFactCheckRequest):
|
|||
confidence=result["verification_result"]["confidence"],
|
||||
evidence=result["verification_result"]["evidence"],
|
||||
reasoning=result["verification_result"]["reasoning"],
|
||||
missing_info=result["verification_result"].get("missing_info", None),
|
||||
missing_info=result["verification_result"].get("missing_info", None)
|
||||
)
|
||||
|
||||
results[url] = verification_result
|
||||
|
|
@ -78,22 +80,24 @@ async def ai_fact_check(request: AIFactCheckRequest):
|
|||
token_usage = TokenUsage(
|
||||
prompt_tokens=total_prompt_tokens,
|
||||
completion_tokens=total_completion_tokens,
|
||||
total_tokens=total_tokens,
|
||||
total_tokens=total_tokens
|
||||
)
|
||||
|
||||
return AIFactCheckResponse(
|
||||
query=request.content,
|
||||
verification_result=results,
|
||||
sources=list(all_sources),
|
||||
token_usage=token_usage,
|
||||
token_usage=token_usage
|
||||
)
|
||||
|
||||
except ValueError as e:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=ErrorResponse(
|
||||
detail=str(e), error_code="INVALID_URL", path="/aicheck-facts"
|
||||
).dict(),
|
||||
detail=str(e),
|
||||
error_code="INVALID_URL",
|
||||
path="/aicheck-facts"
|
||||
).dict()
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(
|
||||
|
|
@ -101,6 +105,6 @@ async def ai_fact_check(request: AIFactCheckRequest):
|
|||
detail=ErrorResponse(
|
||||
detail=f"Error processing fact-check request: {str(e)}",
|
||||
error_code="PROCESSING_ERROR",
|
||||
path="/aicheck-facts",
|
||||
).dict(),
|
||||
path="/aicheck-facts"
|
||||
).dict()
|
||||
)
|
||||
|
|
@ -1,289 +1,20 @@
|
|||
from fastapi import APIRouter, HTTPException
|
||||
import asyncio
|
||||
import logging
|
||||
import httpx
|
||||
import json
|
||||
import re
|
||||
from typing import Union, Optional, Dict, Any
|
||||
from datetime import datetime
|
||||
from app.config import OPENAI_API_KEY,PERPLEXITY_API_KEY
|
||||
from app.config import GOOGLE_API_KEY, GOOGLE_FACT_CHECK_BASE_URL, OPENAI_API_KEY
|
||||
from app.api.scrap_websites import search_websites, SearchRequest
|
||||
from app.services.openai_client import OpenAIClient, AIFactChecker
|
||||
from app.services.image_text_extractor import ImageTextExtractor
|
||||
from app.models.ai_fact_check_models import AIFactCheckResponse
|
||||
from app.services.openai_client import OpenAIClient
|
||||
from app.models.fact_check_models import (
|
||||
FactCheckRequest,
|
||||
FactCheckResponse,
|
||||
UnverifiedFactCheckResponse,
|
||||
Source,
|
||||
VerdictEnum,
|
||||
ConfidenceEnum
|
||||
ErrorResponse,
|
||||
Source
|
||||
)
|
||||
|
||||
# Setup logging
|
||||
logger = logging.getLogger(__name__)
|
||||
from app.websites.fact_checker_website import get_all_sources
|
||||
|
||||
fact_check_router = APIRouter()
|
||||
openai_client = OpenAIClient(OPENAI_API_KEY)
|
||||
ai_fact_checker = AIFactChecker(openai_client)
|
||||
image_text_extractor = ImageTextExtractor(OPENAI_API_KEY)
|
||||
|
||||
|
||||
async def process_url_content(url: str) -> Optional[str]:
|
||||
"""Extract text content from the provided URL."""
|
||||
try:
|
||||
# Add await here
|
||||
text = await image_text_extractor.extract_text(url, is_url=True)
|
||||
if text:
|
||||
logger.info(f"Successfully extracted text from URL: {text}")
|
||||
else:
|
||||
logger.warning(f"No text could be extracted from URL: {url}")
|
||||
return text
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting text from URL: {str(e)}")
|
||||
return None
|
||||
|
||||
# Assuming the enums and models like FactCheckResponse, VerdictEnum, etc., are already imported
|
||||
|
||||
async def process_fact_check(query: str) -> Union[FactCheckResponse, UnverifiedFactCheckResponse]:
|
||||
if not PERPLEXITY_API_KEY:
|
||||
logger.error("Perplexity API key not configured")
|
||||
return UnverifiedFactCheckResponse(
|
||||
claim=query,
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="The fact-checking service is not properly configured.",
|
||||
explanation="The system is missing required API configuration for fact-checking services.",
|
||||
additional_context="This is a temporary system configuration issue."
|
||||
)
|
||||
|
||||
url = "https://api.perplexity.ai/chat/completions"
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
"Authorization": f"Bearer {PERPLEXITY_API_KEY}"
|
||||
}
|
||||
|
||||
payload = {
|
||||
"model": "sonar",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": (
|
||||
"You are a precise fact checker. Analyze the following claim and determine if it's true, false, or partially true. "
|
||||
"Provide a clear verdict, confidence level (HIGH, MEDIUM, LOW), and cite reliable sources. "
|
||||
"Format your response as JSON with fields: verdict, confidence, sources (array of URLs), "
|
||||
"evidence (key facts as a string), and explanation (detailed reasoning as a string)."
|
||||
)
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"Fact check this claim: {query}"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
try:
|
||||
async with httpx.AsyncClient(timeout=30) as client:
|
||||
response = await client.post(url, headers=headers, json=payload)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
perplexity_response = result["choices"][0]["message"]["content"]
|
||||
|
||||
# Attempt to extract JSON
|
||||
try:
|
||||
parsed_data = json.loads(perplexity_response)
|
||||
except json.JSONDecodeError:
|
||||
match = re.search(r'\{.*\}', perplexity_response, re.DOTALL)
|
||||
if match:
|
||||
parsed_data = json.loads(match.group(0))
|
||||
else:
|
||||
parsed_data = extract_fact_check_info(perplexity_response)
|
||||
|
||||
verdict_mapping = {
|
||||
"true": VerdictEnum.TRUE,
|
||||
"false": VerdictEnum.FALSE,
|
||||
"partially true": VerdictEnum.PARTIALLY_TRUE,
|
||||
"partially false": VerdictEnum.PARTIALLY_TRUE,
|
||||
"unverified": VerdictEnum.UNVERIFIED
|
||||
}
|
||||
|
||||
confidence_mapping = {
|
||||
"high": ConfidenceEnum.HIGH,
|
||||
"medium": ConfidenceEnum.MEDIUM,
|
||||
"low": ConfidenceEnum.LOW
|
||||
}
|
||||
|
||||
raw_verdict = parsed_data.get("verdict", "").lower()
|
||||
verdict = verdict_mapping.get(raw_verdict, VerdictEnum.UNVERIFIED)
|
||||
|
||||
raw_confidence = parsed_data.get("confidence", "").lower()
|
||||
confidence = confidence_mapping.get(raw_confidence, ConfidenceEnum.MEDIUM)
|
||||
|
||||
sources = [
|
||||
Source(
|
||||
url=url,
|
||||
domain=extract_domain(url),
|
||||
title=f"Source from {extract_domain(url)}",
|
||||
publisher=extract_domain(url),
|
||||
date_published=None,
|
||||
snippet="Source cited by Perplexity AI"
|
||||
)
|
||||
for url in parsed_data.get("sources", [])
|
||||
]
|
||||
|
||||
# Convert evidence to string if it's not already
|
||||
evidence = parsed_data.get("evidence", "")
|
||||
if isinstance(evidence, dict):
|
||||
# Convert dictionary evidence to string format
|
||||
evidence_str = ""
|
||||
for key, value in evidence.items():
|
||||
evidence_str += f"{key}: {value}\n"
|
||||
evidence = evidence_str.strip()
|
||||
|
||||
# Convert explanation to string if it's not already
|
||||
explanation = parsed_data.get("explanation", "")
|
||||
if isinstance(explanation, dict):
|
||||
explanation_str = ""
|
||||
for key, value in explanation.items():
|
||||
explanation_str += f"{key}: {value}\n"
|
||||
explanation = explanation_str.strip()
|
||||
|
||||
return FactCheckResponse(
|
||||
claim=query,
|
||||
verdict=verdict,
|
||||
confidence=confidence,
|
||||
sources=sources,
|
||||
evidence=evidence,
|
||||
explanation=explanation,
|
||||
additional_context=f"Fact checked using PlanPost AI on {datetime.now().strftime('%Y-%m-%d')}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Fact check error: {str(e)}")
|
||||
return UnverifiedFactCheckResponse(
|
||||
claim=query,
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence='No fact check results found.',
|
||||
explanation="Failed to contact Perplexity AI or parse its response.",
|
||||
additional_context="Possible API issue or malformed response."
|
||||
)
|
||||
|
||||
|
||||
|
||||
def extract_domain(url: str) -> str:
|
||||
"""Extract domain from URL.
|
||||
|
||||
Args:
|
||||
url: The URL to extract domain from
|
||||
|
||||
Returns:
|
||||
The domain name or "unknown" if parsing fails
|
||||
"""
|
||||
try:
|
||||
from urllib.parse import urlparse
|
||||
parsed_url = urlparse(url)
|
||||
domain = parsed_url.netloc
|
||||
return domain if domain else "unknown"
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to extract domain from URL {url}: {str(e)}")
|
||||
return "unknown"
|
||||
|
||||
|
||||
def extract_fact_check_info(text_response: str) -> Dict[str, Any]:
|
||||
"""Extract fact-checking information from a text response when JSON parsing fails.
|
||||
|
||||
Args:
|
||||
text_response: The text response from Perplexity AI
|
||||
|
||||
Returns:
|
||||
A dictionary with fact-checking information extracted from the text
|
||||
"""
|
||||
import re
|
||||
|
||||
result = {
|
||||
"verdict": "unverified",
|
||||
"confidence": "medium",
|
||||
"sources": [],
|
||||
"evidence": "",
|
||||
"explanation": ""
|
||||
}
|
||||
|
||||
# Try to extract verdict with more comprehensive pattern matching
|
||||
verdict_patterns = [
|
||||
r'verdict[:\s]+(true|false|partially true|partially false|inconclusive|unverified)',
|
||||
r'(true|false|partially true|partially false|inconclusive|unverified)[:\s]+verdict',
|
||||
r'claim is (true|false|partially true|partially false|inconclusive|unverified)',
|
||||
r'statement is (true|false|partially true|partially false|inconclusive|unverified)'
|
||||
]
|
||||
|
||||
for pattern in verdict_patterns:
|
||||
verdict_match = re.search(pattern, text_response.lower(), re.IGNORECASE)
|
||||
if verdict_match:
|
||||
result["verdict"] = verdict_match.group(1)
|
||||
break
|
||||
|
||||
# Try to extract confidence with multiple patterns
|
||||
confidence_patterns = [
|
||||
r'confidence[:\s]+(high|medium|low)',
|
||||
r'(high|medium|low)[:\s]+confidence',
|
||||
r'confidence level[:\s]+(high|medium|low)',
|
||||
r'(high|medium|low)[:\s]+confidence level'
|
||||
]
|
||||
|
||||
for pattern in confidence_patterns:
|
||||
confidence_match = re.search(pattern, text_response.lower(), re.IGNORECASE)
|
||||
if confidence_match:
|
||||
result["confidence"] = confidence_match.group(1)
|
||||
break
|
||||
|
||||
# Try to extract URLs as sources - more robust pattern
|
||||
urls = re.findall(r'https?://[^\s"\'\]\)]+', text_response)
|
||||
# Filter out any malformed URLs
|
||||
valid_urls = []
|
||||
for url in urls:
|
||||
if '.' in url and len(url) > 10: # Basic validation
|
||||
valid_urls.append(url)
|
||||
result["sources"] = valid_urls
|
||||
|
||||
# Try to extract evidence and explanation with multiple patterns
|
||||
evidence_patterns = [
|
||||
r'evidence[:\s]+(.*?)(?=explanation|\Z)',
|
||||
r'key facts[:\s]+(.*?)(?=explanation|\Z)',
|
||||
r'facts[:\s]+(.*?)(?=explanation|\Z)'
|
||||
]
|
||||
|
||||
for pattern in evidence_patterns:
|
||||
evidence_match = re.search(pattern, text_response, re.IGNORECASE | re.DOTALL)
|
||||
if evidence_match:
|
||||
result["evidence"] = evidence_match.group(1).strip()
|
||||
break
|
||||
|
||||
explanation_patterns = [
|
||||
r'explanation[:\s]+(.*?)(?=\Z)',
|
||||
r'reasoning[:\s]+(.*?)(?=\Z)',
|
||||
r'analysis[:\s]+(.*?)(?=\Z)'
|
||||
]
|
||||
|
||||
for pattern in explanation_patterns:
|
||||
explanation_match = re.search(pattern, text_response, re.IGNORECASE | re.DOTALL)
|
||||
if explanation_match:
|
||||
result["explanation"] = explanation_match.group(1).strip()
|
||||
break
|
||||
|
||||
# If no structured information found, use the whole response as evidence
|
||||
if not result["evidence"] and not result["explanation"]:
|
||||
result["evidence"] = text_response
|
||||
# Generate a minimal explanation if none was found
|
||||
result["explanation"] = "The fact-checking service provided information about this claim but did not structure it in the expected format. The full response has been included as evidence for you to review."
|
||||
|
||||
return result
|
||||
|
||||
|
||||
async def generate_fact_report(query: str, fact_check_data: dict | AIFactCheckResponse) -> Union[FactCheckResponse, UnverifiedFactCheckResponse]:
|
||||
async def generate_fact_report(query: str, fact_check_data: dict) -> FactCheckResponse:
|
||||
"""Generate a fact check report using OpenAI based on the fact check results."""
|
||||
try:
|
||||
base_system_prompt = """You are a professional fact-checking reporter. Your task is to create a detailed fact check report based on the provided data. Focus on accuracy, clarity, and proper citation of sources.
|
||||
|
|
@ -292,35 +23,7 @@ Rules:
|
|||
1. Include all source URLs and names in the sources list
|
||||
2. Keep the explanation focused on verifiable facts
|
||||
3. Include dates when available
|
||||
4. Maintain objectivity in the report
|
||||
5. If no reliable sources are found, provide a clear explanation why"""
|
||||
|
||||
# Handle both dictionary and AIFactCheckResponse
|
||||
if hasattr(fact_check_data, 'verification_result'):
|
||||
# It's an AIFactCheckResponse
|
||||
has_sources = bool(fact_check_data.sources)
|
||||
verification_result = fact_check_data.verification_result
|
||||
fact_check_data_dict = fact_check_data.dict()
|
||||
else:
|
||||
# It's a dictionary
|
||||
has_sources = bool(fact_check_data.get("claims") or fact_check_data.get("urls_found"))
|
||||
verification_result = fact_check_data.get("verification_result", {})
|
||||
fact_check_data_dict = fact_check_data
|
||||
|
||||
# If no sources were found, return an unverified response
|
||||
if not has_sources or (
|
||||
isinstance(fact_check_data, dict) and
|
||||
fact_check_data.get("status") == "no_results"
|
||||
) or (verification_result and verification_result.get("no_sources_found")):
|
||||
return UnverifiedFactCheckResponse(
|
||||
claim=query,
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="No fact-checking sources have verified this claim yet.",
|
||||
explanation="Our search across reputable fact-checking websites did not find any formal verification of this claim. This doesn't mean the claim is false - just that it hasn't been formally fact-checked yet.",
|
||||
additional_context="The claim may be too recent for fact-checkers to have investigated, or it may not have been widely circulated enough to warrant formal fact-checking."
|
||||
)
|
||||
4. Maintain objectivity in the report"""
|
||||
|
||||
base_user_prompt = """Generate a comprehensive fact check report in this exact JSON format:
|
||||
{
|
||||
|
|
@ -336,12 +39,14 @@ Rules:
|
|||
"evidence": "A concise summary of the key evidence (1-2 sentences)",
|
||||
"explanation": "A detailed explanation including who verified it, when it was verified, and the key findings (2-3 sentences)",
|
||||
"additional_context": "Important context about the verification process, limitations, or broader implications (1-2 sentences)"
|
||||
}"""
|
||||
}
|
||||
|
||||
if isinstance(fact_check_data, dict) and "claims" in fact_check_data:
|
||||
Ensure all URLs in sources are complete (including https:// if missing) and each source has both a URL and name."""
|
||||
|
||||
if "claims" in fact_check_data:
|
||||
system_prompt = base_system_prompt
|
||||
user_prompt = f"""Query: {query}
|
||||
Fact Check Results: {fact_check_data_dict}
|
||||
Fact Check Results: {fact_check_data}
|
||||
|
||||
{base_user_prompt}
|
||||
|
||||
|
|
@ -350,10 +55,11 @@ Rules:
|
|||
2. Specify verification dates when available
|
||||
3. Name the fact-checking organizations involved
|
||||
4. Describe the verification process"""
|
||||
|
||||
else:
|
||||
system_prompt = base_system_prompt
|
||||
user_prompt = f"""Query: {query}
|
||||
Fact Check Results: {fact_check_data_dict}
|
||||
Fact Check Results: {fact_check_data}
|
||||
|
||||
{base_user_prompt}
|
||||
|
||||
|
|
@ -370,236 +76,117 @@ Rules:
|
|||
)
|
||||
|
||||
try:
|
||||
# First try to parse the response directly
|
||||
response_data = response["response"]
|
||||
|
||||
if isinstance(response_data.get("sources"), list):
|
||||
# Clean up sources before validation
|
||||
if isinstance(response_data.get('sources'), list):
|
||||
cleaned_sources = []
|
||||
for source in response_data["sources"]:
|
||||
for source in response_data['sources']:
|
||||
if isinstance(source, str):
|
||||
url = source if source.startswith("http") else f"https://{source}"
|
||||
cleaned_sources.append({"url": url, "name": source})
|
||||
# Convert string sources to Source objects
|
||||
url = source if source.startswith('http') else f"https://{source}"
|
||||
cleaned_sources.append({
|
||||
"url": url,
|
||||
"name": source
|
||||
})
|
||||
elif isinstance(source, dict):
|
||||
url = source.get("url", "")
|
||||
if url and not url.startswith("http"):
|
||||
source["url"] = f"https://{url}"
|
||||
# Ensure URL has proper scheme
|
||||
url = source.get('url', '')
|
||||
if url and not url.startswith('http'):
|
||||
source['url'] = f"https://{url}"
|
||||
cleaned_sources.append(source)
|
||||
response_data["sources"] = cleaned_sources
|
||||
response_data['sources'] = cleaned_sources
|
||||
|
||||
if response_data["verdict"] == "Unverified" or not response_data.get("sources"):
|
||||
return UnverifiedFactCheckResponse(**response_data)
|
||||
return FactCheckResponse(**response_data)
|
||||
fact_check_response = FactCheckResponse(**response_data)
|
||||
return fact_check_response
|
||||
|
||||
except Exception as validation_error:
|
||||
logger.error(f"Response validation error: {str(validation_error)}")
|
||||
return UnverifiedFactCheckResponse(
|
||||
claim=query,
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="An error occurred while processing the fact check results.",
|
||||
explanation="The system encountered an error while validating the fact check results.",
|
||||
additional_context="This is a technical error and does not reflect on the truthfulness of the claim."
|
||||
print(f"Response validation error: {str(validation_error)}")
|
||||
raise HTTPException(
|
||||
status_code=422,
|
||||
detail=ErrorResponse(
|
||||
detail=f"Invalid response format: {str(validation_error)}",
|
||||
error_code="VALIDATION_ERROR",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating fact report: {str(e)}")
|
||||
return UnverifiedFactCheckResponse(
|
||||
claim=query,
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="An error occurred while generating the fact check report.",
|
||||
explanation="The system encountered an unexpected error while processing the fact check request.",
|
||||
additional_context="This is a technical error and does not reflect on the truthfulness of the claim."
|
||||
print(f"Error generating fact report: {str(e)}")
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=ErrorResponse(
|
||||
detail="Error generating fact report",
|
||||
error_code="FACT_CHECK_ERROR",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
)
|
||||
|
||||
async def combine_fact_reports(query: str, url_text: str, query_result: Dict[str, Any], url_result: Dict[str, Any]) -> Union[FactCheckResponse, UnverifiedFactCheckResponse]:
|
||||
"""Combine fact check results from query and URL into a single comprehensive report."""
|
||||
try:
|
||||
system_prompt = """You are a professional fact-checking reporter. Your task is to create a comprehensive fact check report by combining and analyzing multiple fact-checking results. Focus on accuracy, clarity, and proper citation of all sources.
|
||||
|
||||
Rules:
|
||||
1. Include all source URLs and names from both result sets
|
||||
2. Compare and contrast findings from different sources
|
||||
3. Include dates when available
|
||||
4. Note any discrepancies between sources
|
||||
5. Provide a balanced, objective analysis"""
|
||||
|
||||
user_prompt = f"""Original Query: {query}
|
||||
Extracted Text from URL: {url_text}
|
||||
|
||||
First Fact Check Result: {query_result}
|
||||
Second Fact Check Result: {url_result}
|
||||
|
||||
Generate a comprehensive fact check report in this exact JSON format:
|
||||
{{
|
||||
"claim": "Write the exact claim being verified",
|
||||
"verdict": "One of: True/False/Partially True/Unverified",
|
||||
"confidence": "One of: High/Medium/Low",
|
||||
"sources": [
|
||||
{{
|
||||
"url": "Full URL of the source",
|
||||
"name": "Name of the source organization"
|
||||
}}
|
||||
],
|
||||
"evidence": "A concise summary of the key evidence from both sources (2-3 sentences)",
|
||||
"explanation": "A detailed explanation combining findings from both fact checks (3-4 sentences)",
|
||||
"additional_context": "Important context about differences or similarities in findings (1-2 sentences)"
|
||||
}}
|
||||
|
||||
The report should:
|
||||
1. Combine sources from both fact checks
|
||||
2. Compare findings from both analyses
|
||||
3. Note any differences in conclusions
|
||||
4. Provide a unified verdict based on all available information"""
|
||||
|
||||
response = await openai_client.generate_text_response(
|
||||
system_prompt=system_prompt,
|
||||
user_prompt=user_prompt,
|
||||
max_tokens=1000
|
||||
)
|
||||
|
||||
response_data = response["response"]
|
||||
|
||||
# Clean up sources from both results
|
||||
if isinstance(response_data.get("sources"), list):
|
||||
cleaned_sources = []
|
||||
for source in response_data["sources"]:
|
||||
if isinstance(source, str):
|
||||
url = source if source.startswith("http") else f"https://{source}"
|
||||
cleaned_sources.append({"url": url, "name": source})
|
||||
elif isinstance(source, dict):
|
||||
url = source.get("url", "")
|
||||
if url and not url.startswith("http"):
|
||||
source["url"] = f"https://{url}"
|
||||
cleaned_sources.append(source)
|
||||
response_data["sources"] = cleaned_sources
|
||||
|
||||
if response_data["verdict"] == "Unverified" or not response_data.get("sources"):
|
||||
return UnverifiedFactCheckResponse(**response_data)
|
||||
return FactCheckResponse(**response_data)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error combining fact reports: {str(e)}")
|
||||
return UnverifiedFactCheckResponse(
|
||||
claim=query,
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="An error occurred while combining fact check reports.",
|
||||
explanation="The system encountered an error while trying to combine results from multiple sources.",
|
||||
additional_context="This is a technical error and does not reflect on the truthfulness of the claim."
|
||||
)
|
||||
|
||||
|
||||
@fact_check_router.post("/check-facts", response_model=Union[FactCheckResponse, UnverifiedFactCheckResponse])
|
||||
@fact_check_router.post("/check-facts", response_model=FactCheckResponse)
|
||||
async def check_facts(request: FactCheckRequest):
|
||||
"""
|
||||
Fetch fact check results and generate a comprehensive report.
|
||||
Handles both query-based and URL-based fact checking.
|
||||
Always returns a 200 response with appropriate content, never an error.
|
||||
"""
|
||||
try:
|
||||
url_text = None
|
||||
query_result = None
|
||||
url_result = None
|
||||
if not GOOGLE_API_KEY or not GOOGLE_FACT_CHECK_BASE_URL:
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=ErrorResponse(
|
||||
detail="Google API key or base URL is not configured",
|
||||
error_code="CONFIGURATION_ERROR",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
)
|
||||
|
||||
headers = {"Content-Type": "application/json"}
|
||||
async with httpx.AsyncClient() as client:
|
||||
# Get fact checker sources from the centralized configuration
|
||||
fact_checker_sources = get_all_sources()
|
||||
|
||||
for source in fact_checker_sources:
|
||||
params = {
|
||||
"key": GOOGLE_API_KEY,
|
||||
"query": request.query,
|
||||
"languageCode": "en-US",
|
||||
"reviewPublisherSiteFilter": source.domain,
|
||||
"pageSize": 10
|
||||
}
|
||||
|
||||
# If URL is provided, try to extract text
|
||||
if request.url:
|
||||
try:
|
||||
url_text = await process_url_content(request.url)
|
||||
response = await client.get(
|
||||
GOOGLE_FACT_CHECK_BASE_URL,
|
||||
params=params,
|
||||
headers=headers
|
||||
)
|
||||
response.raise_for_status()
|
||||
json_response = response.json()
|
||||
|
||||
if json_response.get("claims"):
|
||||
return await generate_fact_report(request.query, json_response)
|
||||
|
||||
except httpx.RequestError as e:
|
||||
print(f"Error fetching results for site {source.domain}: {str(e)}")
|
||||
continue
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting text from URL: {str(e)}")
|
||||
url_text = None
|
||||
print(f"Unexpected error for site {source.domain}: {str(e)}")
|
||||
continue
|
||||
|
||||
if not url_text and not request.query:
|
||||
# Only return early if URL text extraction failed and no query provided
|
||||
return UnverifiedFactCheckResponse(
|
||||
claim=f"URL check requested: {request.url}",
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="No fact check results found",
|
||||
explanation="The system encountered errors while processing the fact checks.",
|
||||
additional_context="Please try again with different input or contact support if the issue persists."
|
||||
)
|
||||
|
||||
# If URL text was successfully extracted, process it
|
||||
if url_text:
|
||||
logger.info(f"Processing fact check for extracted text: {url_text}")
|
||||
try:
|
||||
url_result = await process_fact_check(url_text)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing fact check for URL text: {str(e)}")
|
||||
url_result = UnverifiedFactCheckResponse(
|
||||
claim=f"URL: {request.url}",
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="No fact check results found",
|
||||
explanation="The system encountered errors while processing the fact checks.",
|
||||
additional_context="Please try again with different input or contact support if the issue persists."
|
||||
search_request = SearchRequest(
|
||||
search_text=request.query,
|
||||
source_types=["fact_checkers"]
|
||||
)
|
||||
|
||||
# Process query if provided
|
||||
if request.query:
|
||||
try:
|
||||
query_result = await process_fact_check(request.query)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing fact check for query: {str(e)}")
|
||||
query_result = UnverifiedFactCheckResponse(
|
||||
claim=request.query,
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="No fact check results found",
|
||||
explanation="The system encountered errors while processing the fact checks.",
|
||||
additional_context="Please try again with different input or contact support if the issue persists."
|
||||
)
|
||||
|
||||
# If both results are available, combine them
|
||||
if query_result and url_result and url_text:
|
||||
try:
|
||||
return await combine_fact_reports(request.query, url_text,
|
||||
query_result.dict(), url_result.dict())
|
||||
except Exception as e:
|
||||
logger.error(f"Error combining fact reports: {str(e)}")
|
||||
return UnverifiedFactCheckResponse(
|
||||
claim=request.query or f"URL: {request.url}",
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="No fact check results found",
|
||||
explanation="The system encountered errors while processing the fact checks.",
|
||||
additional_context="Please try again with different input or contact support if the issue persists."
|
||||
)
|
||||
|
||||
# If only one result is available
|
||||
if query_result:
|
||||
return query_result
|
||||
if url_result:
|
||||
return url_result
|
||||
|
||||
# If no valid results
|
||||
return UnverifiedFactCheckResponse(
|
||||
claim=request.query or f"URL: {request.url}",
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="No fact check results found",
|
||||
explanation="The system encountered errors while processing the fact checks.",
|
||||
additional_context="Please try again with different input or contact support if the issue persists."
|
||||
)
|
||||
ai_response = await search_websites(search_request)
|
||||
return await generate_fact_report(request.query, ai_response)
|
||||
|
||||
except Exception as e:
|
||||
# Catch-all exception handler to ensure we always return a 200 response
|
||||
logger.error(f"Unexpected error in check_facts: {str(e)}")
|
||||
return UnverifiedFactCheckResponse(
|
||||
claim=request.query or f"URL: {request.url}",
|
||||
verdict=VerdictEnum.UNVERIFIED,
|
||||
confidence=ConfidenceEnum.LOW,
|
||||
sources=[],
|
||||
evidence="No fact check results found",
|
||||
explanation="The system encountered errors while processing the fact checks.",
|
||||
additional_context="Please try again with different input or contact support if the issue persists."
|
||||
print(f"Error in AI fact check: {str(e)}")
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=ErrorResponse(
|
||||
detail="No fact check results found",
|
||||
error_code="NOT_FOUND",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
)
|
||||
|
|
@ -7,7 +7,7 @@ from pydantic import BaseModel
|
|||
from app.models.ai_fact_check_models import (
|
||||
AIFactCheckRequest,
|
||||
FactCheckSource,
|
||||
SourceType,
|
||||
SourceType
|
||||
)
|
||||
from app.websites.fact_checker_website import SOURCES, get_all_sources
|
||||
from app.api.ai_fact_check import ai_fact_check
|
||||
|
|
@ -18,10 +18,10 @@ class SearchRequest(BaseModel):
|
|||
search_text: str
|
||||
source_types: List[str] = ["fact_checkers"]
|
||||
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
|
@ -38,46 +38,39 @@ def get_domain_from_url(url: str) -> str:
|
|||
try:
|
||||
parsed = urlparse(url)
|
||||
domain = parsed.netloc.lower()
|
||||
if domain.startswith("www."):
|
||||
if domain.startswith('www.'):
|
||||
domain = domain[4:]
|
||||
return domain
|
||||
except Exception as e:
|
||||
logger.error(f"Error extracting domain from URL {url}: {str(e)}")
|
||||
return ""
|
||||
|
||||
|
||||
def is_valid_source_domain(domain: str, sources: List[FactCheckSource]) -> bool:
|
||||
"""Check if domain matches any source with improved matching logic."""
|
||||
if not domain:
|
||||
return False
|
||||
|
||||
domain = domain.lower()
|
||||
if domain.startswith("www."):
|
||||
if domain.startswith('www.'):
|
||||
domain = domain[4:]
|
||||
|
||||
for source in sources:
|
||||
source_domain = source.domain.lower()
|
||||
if source_domain.startswith("www."):
|
||||
if source_domain.startswith('www.'):
|
||||
source_domain = source_domain[4:]
|
||||
|
||||
if domain == source_domain or domain.endswith("." + source_domain):
|
||||
if domain == source_domain or domain.endswith('.' + source_domain):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
async def build_enhanced_search_query(
|
||||
query: str, sources: List[FactCheckSource]
|
||||
) -> str:
|
||||
async def build_enhanced_search_query(query: str, sources: List[FactCheckSource]) -> str:
|
||||
"""Build search query with site restrictions."""
|
||||
site_queries = [f"site:{source.domain}" for source in sources]
|
||||
site_restriction = " OR ".join(site_queries)
|
||||
return f"({query}) ({site_restriction})"
|
||||
|
||||
|
||||
async def google_custom_search(
|
||||
query: str, sources: List[FactCheckSource], page: int = 1
|
||||
) -> Optional[Dict]:
|
||||
async def google_custom_search(query: str, sources: List[FactCheckSource], page: int = 1) -> Optional[Dict]:
|
||||
"""Perform Google Custom Search with enhanced query."""
|
||||
enhanced_query = await build_enhanced_search_query(query, sources)
|
||||
start_index = ((page - 1) * RESULTS_PER_PAGE) + 1
|
||||
|
|
@ -87,7 +80,7 @@ async def google_custom_search(
|
|||
"cx": GOOGLE_ENGINE_ID,
|
||||
"q": enhanced_query,
|
||||
"num": RESULTS_PER_PAGE,
|
||||
"start": start_index,
|
||||
"start": start_index
|
||||
}
|
||||
|
||||
async with httpx.AsyncClient(timeout=30.0) as client:
|
||||
|
|
@ -99,7 +92,6 @@ async def google_custom_search(
|
|||
logger.error(f"Search error: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail=f"Search error: {str(e)}")
|
||||
|
||||
|
||||
@scrap_websites_router.post("/search")
|
||||
async def search_websites(request: SearchRequest):
|
||||
# Get the source types from the request
|
||||
|
|
@ -123,9 +115,7 @@ async def search_websites(request: SearchRequest):
|
|||
if len(all_urls) >= 50:
|
||||
break
|
||||
|
||||
search_response = await google_custom_search(
|
||||
request.search_text, selected_sources, page
|
||||
)
|
||||
search_response = await google_custom_search(request.search_text, selected_sources, page)
|
||||
|
||||
if not search_response or not search_response.get("items"):
|
||||
break
|
||||
|
|
@ -142,23 +132,25 @@ async def search_websites(request: SearchRequest):
|
|||
domain_results[domain] = []
|
||||
|
||||
if len(domain_results[domain]) < MAX_URLS_PER_DOMAIN:
|
||||
domain_results[domain].append(
|
||||
{
|
||||
domain_results[domain].append({
|
||||
"url": url,
|
||||
"title": item.get("title", ""),
|
||||
"snippet": item.get("snippet", ""),
|
||||
}
|
||||
)
|
||||
"snippet": item.get("snippet", "")
|
||||
})
|
||||
all_urls.append(url)
|
||||
|
||||
if len(all_urls) >= 50:
|
||||
break
|
||||
|
||||
if not all_urls:
|
||||
return {"status": "no_results", "urls_found": 0}
|
||||
return {
|
||||
"status": "no_results",
|
||||
"urls_found": 0
|
||||
}
|
||||
|
||||
fact_check_request = AIFactCheckRequest(
|
||||
content=request.search_text, urls=all_urls[:5]
|
||||
content=request.search_text,
|
||||
urls=all_urls[:5]
|
||||
)
|
||||
|
||||
return await ai_fact_check(fact_check_request)
|
||||
|
|
|
|||
|
|
@ -4,10 +4,9 @@ from dotenv import load_dotenv
|
|||
load_dotenv()
|
||||
|
||||
GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]
|
||||
GOOGLE_FACT_CHECK_BASE_URL = os.environ["GOOGLE_FACT_CHECK_BASE_URL"]
|
||||
GOOGLE_FACT_CHECK_BASE_URL= os.environ["GOOGLE_FACT_CHECK_BASE_URL"]
|
||||
GOOGLE_ENGINE_ID = os.environ["GOOGLE_ENGINE_ID"]
|
||||
GOOGLE_SEARCH_URL = os.environ["GOOGLE_SEARCH_URL"]
|
||||
PERPLEXITY_API_KEY= os.environ["PERPLEXITY_API_KEY"]
|
||||
|
||||
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
|
||||
FRONTEND_URL = os.environ["FRONTEND_URL"]
|
||||
Binary file not shown.
|
|
@ -4,46 +4,38 @@ from enum import Enum
|
|||
from datetime import datetime
|
||||
from urllib.parse import urlparse
|
||||
|
||||
|
||||
# Common Models
|
||||
class TokenUsage(BaseModel):
|
||||
prompt_tokens: Optional[int] = 0
|
||||
completion_tokens: Optional[int] = 0
|
||||
total_tokens: Optional[int] = 0
|
||||
|
||||
|
||||
class ErrorResponse(BaseModel):
|
||||
detail: str
|
||||
error_code: str = Field(..., description="Unique error code for this type of error")
|
||||
timestamp: str = Field(default_factory=lambda: datetime.now().isoformat())
|
||||
path: Optional[str] = Field(
|
||||
None, description="The endpoint path where error occurred"
|
||||
)
|
||||
path: Optional[str] = Field(None, description="The endpoint path where error occurred")
|
||||
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
"example": {
|
||||
"detail": "Error description",
|
||||
"error_code": "ERROR_CODE",
|
||||
"timestamp": "2024-12-09T16:49:30.905765",
|
||||
"path": "/check-facts",
|
||||
"path": "/check-facts"
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
})
|
||||
|
||||
# Fact Check Models
|
||||
class Publisher(BaseModel):
|
||||
name: str
|
||||
site: Optional[str] = Field(None, description="Publisher's website")
|
||||
|
||||
@validator("site")
|
||||
@validator('site')
|
||||
def validate_site(cls, v):
|
||||
if v and not (v.startswith("http://") or v.startswith("https://")):
|
||||
if v and not (v.startswith('http://') or v.startswith('https://')):
|
||||
return f"https://{v}"
|
||||
return v
|
||||
|
||||
|
||||
class ClaimReview(BaseModel):
|
||||
publisher: Publisher
|
||||
url: Optional[HttpUrl] = None
|
||||
|
|
@ -52,25 +44,21 @@ class ClaimReview(BaseModel):
|
|||
textualRating: Optional[str] = None
|
||||
languageCode: str = Field(default="en-US")
|
||||
|
||||
|
||||
class Claim(BaseModel):
|
||||
text: str
|
||||
claimant: Optional[str] = None
|
||||
claimDate: Optional[str] = None
|
||||
claimReview: List[ClaimReview]
|
||||
|
||||
|
||||
class SourceType(str, Enum):
|
||||
FACT_CHECKER = "fact_checker"
|
||||
NEWS_SITE = "news_site"
|
||||
|
||||
|
||||
class FactCheckSource(BaseModel):
|
||||
domain: str
|
||||
type: SourceType
|
||||
priority: int = Field(default=1, ge=1, le=10)
|
||||
|
||||
|
||||
# Verification Models
|
||||
class VerificationResult(BaseModel):
|
||||
verdict: str = Field(..., description="True/False/Insufficient Information")
|
||||
|
|
@ -79,46 +67,44 @@ class VerificationResult(BaseModel):
|
|||
reasoning: str
|
||||
missing_info: Optional[str] = None
|
||||
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
"example": {
|
||||
"verdict": "True",
|
||||
"confidence": "High",
|
||||
"evidence": ["Direct quote from source supporting the claim"],
|
||||
"reasoning": "Detailed analysis of why the claim is considered true",
|
||||
"missing_info": "Any caveats or limitations of the verification",
|
||||
"missing_info": "Any caveats or limitations of the verification"
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
})
|
||||
|
||||
# Request Models
|
||||
class BaseFactCheckRequest(BaseModel):
|
||||
content: str = Field(
|
||||
..., min_length=10, max_length=1000, description="The claim to be fact-checked"
|
||||
...,
|
||||
min_length=10,
|
||||
max_length=1000,
|
||||
description="The claim to be fact-checked"
|
||||
)
|
||||
|
||||
@validator("content")
|
||||
@validator('content')
|
||||
def validate_content(cls, v):
|
||||
if not v.strip():
|
||||
raise ValueError("Content cannot be empty or just whitespace")
|
||||
return v.strip()
|
||||
|
||||
|
||||
class GoogleFactCheckRequest(BaseFactCheckRequest):
|
||||
language: str = Field(default="en-US", pattern="^[a-z]{2}-[A-Z]{2}$")
|
||||
max_results_per_source: int = Field(default=10, ge=1, le=50)
|
||||
|
||||
|
||||
class AIFactCheckRequest(BaseFactCheckRequest):
|
||||
urls: List[str] = Field(
|
||||
...,
|
||||
min_items=1,
|
||||
max_items=5,
|
||||
description="List of URLs to check the content against. URLs will be prefixed with https:// if protocol is missing",
|
||||
description="List of URLs to check the content against. URLs will be prefixed with https:// if protocol is missing"
|
||||
)
|
||||
|
||||
@validator("urls")
|
||||
@validator('urls')
|
||||
def validate_urls(cls, urls):
|
||||
validated_urls = []
|
||||
for url in urls:
|
||||
|
|
@ -126,8 +112,8 @@ class AIFactCheckRequest(BaseFactCheckRequest):
|
|||
raise ValueError("URL cannot be empty")
|
||||
|
||||
# Add https:// if no protocol specified
|
||||
if not url.startswith(("http://", "https://")):
|
||||
url = f"https://{url}"
|
||||
if not url.startswith(('http://', 'https://')):
|
||||
url = f'https://{url}'
|
||||
|
||||
try:
|
||||
result = urlparse(url)
|
||||
|
|
@ -139,18 +125,15 @@ class AIFactCheckRequest(BaseFactCheckRequest):
|
|||
|
||||
return validated_urls
|
||||
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
"example": {
|
||||
"content": "Indian flag was drawn in BUET campus",
|
||||
"urls": [
|
||||
"www.altnews.in/article-about-flag",
|
||||
"www.another-source.com/related-news",
|
||||
],
|
||||
"www.another-source.com/related-news"
|
||||
]
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
})
|
||||
|
||||
# Response Models
|
||||
class BaseFactCheckResponse(BaseModel):
|
||||
|
|
@ -158,20 +141,17 @@ class BaseFactCheckResponse(BaseModel):
|
|||
token_usage: TokenUsage
|
||||
sources: List[str]
|
||||
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
"example": {
|
||||
"query": "Example statement to verify",
|
||||
"token_usage": {
|
||||
"prompt_tokens": 100,
|
||||
"completion_tokens": 50,
|
||||
"total_tokens": 150,
|
||||
"total_tokens": 150
|
||||
},
|
||||
"sources": ["source1.com", "source2.com"],
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
})
|
||||
|
||||
class GoogleFactCheckResponse(BaseFactCheckResponse):
|
||||
total_claims_found: int
|
||||
|
|
@ -179,51 +159,44 @@ class GoogleFactCheckResponse(BaseFactCheckResponse):
|
|||
verification_result: Dict[str, Any]
|
||||
summary: Dict[str, int]
|
||||
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
"example": {
|
||||
"query": "Example claim",
|
||||
"total_claims_found": 1,
|
||||
"results": [
|
||||
{
|
||||
"results": [{
|
||||
"text": "Example claim text",
|
||||
"claimant": "Source name",
|
||||
"claimReview": [
|
||||
{
|
||||
"claimReview": [{
|
||||
"publisher": {
|
||||
"name": "Fact Checker",
|
||||
"site": "factchecker.com",
|
||||
"site": "factchecker.com"
|
||||
},
|
||||
"textualRating": "True",
|
||||
}
|
||||
],
|
||||
}
|
||||
],
|
||||
"textualRating": "True"
|
||||
}]
|
||||
}],
|
||||
"verification_result": {
|
||||
"verdict": "True",
|
||||
"confidence": "High",
|
||||
"evidence": ["Supporting evidence"],
|
||||
"reasoning": "Detailed analysis",
|
||||
"reasoning": "Detailed analysis"
|
||||
},
|
||||
"sources": ["factchecker.com"],
|
||||
"token_usage": {
|
||||
"prompt_tokens": 100,
|
||||
"completion_tokens": 50,
|
||||
"total_tokens": 150,
|
||||
"total_tokens": 150
|
||||
},
|
||||
"summary": {"total_sources": 1, "fact_checking_sites_queried": 10},
|
||||
"summary": {
|
||||
"total_sources": 1,
|
||||
"fact_checking_sites_queried": 10
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
})
|
||||
|
||||
class AIFactCheckResponse(BaseFactCheckResponse):
|
||||
verification_result: Dict[
|
||||
str, VerificationResult
|
||||
] # Changed to Dict to store results per URL
|
||||
verification_result: Dict[str, VerificationResult] # Changed to Dict to store results per URL
|
||||
|
||||
model_config = ConfigDict(
|
||||
json_schema_extra={
|
||||
model_config = ConfigDict(json_schema_extra={
|
||||
"example": {
|
||||
"query": "Indian flag was drawn in BUET campus",
|
||||
"verification_result": {
|
||||
|
|
@ -232,26 +205,24 @@ class AIFactCheckResponse(BaseFactCheckResponse):
|
|||
"confidence": "High",
|
||||
"evidence": ["Supporting evidence from source 1"],
|
||||
"reasoning": "Detailed analysis from source 1",
|
||||
"missing_info": None,
|
||||
"missing_info": None
|
||||
},
|
||||
"https://www.source2.com": {
|
||||
"verdict": "True",
|
||||
"confidence": "Medium",
|
||||
"evidence": ["Supporting evidence from source 2"],
|
||||
"reasoning": "Analysis from source 2",
|
||||
"missing_info": "Additional context needed",
|
||||
},
|
||||
"missing_info": "Additional context needed"
|
||||
}
|
||||
},
|
||||
"sources": ["source1.com", "source2.com"],
|
||||
"token_usage": {
|
||||
"prompt_tokens": 200,
|
||||
"completion_tokens": 100,
|
||||
"total_tokens": 300,
|
||||
},
|
||||
"total_tokens": 300
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
})
|
||||
|
||||
# Backwards compatibility aliases
|
||||
FactCheckRequest = GoogleFactCheckRequest
|
||||
|
|
|
|||
|
|
@ -1,106 +1,54 @@
|
|||
from pydantic import BaseModel, Field, HttpUrl, validator, root_validator
|
||||
from typing import List, Literal, Union, Optional
|
||||
from pydantic import BaseModel, Field, HttpUrl, validator
|
||||
from typing import List, Literal, Union
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class VerdictEnum(str, Enum):
|
||||
TRUE = "True"
|
||||
FALSE = "False"
|
||||
PARTIALLY_TRUE = "Partially True"
|
||||
UNVERIFIED = "Unverified"
|
||||
|
||||
|
||||
class ConfidenceEnum(str, Enum):
|
||||
HIGH = "High"
|
||||
MEDIUM = "Medium"
|
||||
LOW = "Low"
|
||||
|
||||
|
||||
class FactCheckRequest(BaseModel):
|
||||
query: Optional[str] = Field(
|
||||
None,
|
||||
query: str = Field(
|
||||
...,
|
||||
min_length=3,
|
||||
max_length=500,
|
||||
description="The claim or statement to be fact-checked",
|
||||
example="Did NASA confirm finding alien structures on Mars in 2024?",
|
||||
example="Did NASA confirm finding alien structures on Mars in 2024?"
|
||||
)
|
||||
url: Optional[str] = Field(
|
||||
None,
|
||||
description="URL to be fact-checked",
|
||||
example="https://example.com/article",
|
||||
)
|
||||
|
||||
@root_validator(pre=True)
|
||||
def validate_at_least_one(cls, values):
|
||||
"""Validate that at least one of query or url is provided."""
|
||||
query = values.get('query')
|
||||
url = values.get('url')
|
||||
if not query and not url:
|
||||
raise ValueError("At least one of 'query' or 'url' must be provided")
|
||||
return values
|
||||
|
||||
@validator('url')
|
||||
def validate_url(cls, v):
|
||||
"""Validate URL format if provided."""
|
||||
if v is not None and len(v) < 3:
|
||||
raise ValueError("URL must be at least 3 characters")
|
||||
return v
|
||||
|
||||
|
||||
class Source(BaseModel):
|
||||
url: str
|
||||
name: str = ""
|
||||
|
||||
@validator("url")
|
||||
@validator('url')
|
||||
def validate_url(cls, v):
|
||||
# Basic URL validation without requiring HTTP/HTTPS
|
||||
if not v or len(v) < 3:
|
||||
raise ValueError("URL must not be empty and must be at least 3 characters")
|
||||
return v
|
||||
|
||||
|
||||
class UnverifiedFactCheckResponse(BaseModel):
|
||||
claim: str = Field(
|
||||
...,
|
||||
min_length=10,
|
||||
max_length=1000,
|
||||
description="The exact claim being verified",
|
||||
)
|
||||
verdict: VerdictEnum = Field(..., description="The verification verdict")
|
||||
confidence: ConfidenceEnum = Field(..., description="Confidence level in the verdict")
|
||||
sources: List[Source] = Field(
|
||||
default=[],
|
||||
description="List of sources used in verification"
|
||||
)
|
||||
evidence: str = Field(
|
||||
...,
|
||||
min_length=20,
|
||||
max_length=500,
|
||||
description="Concise summary of key evidence",
|
||||
)
|
||||
explanation: str = Field(
|
||||
...,
|
||||
min_length=50,
|
||||
max_length=1000,
|
||||
description="Detailed explanation of verification findings",
|
||||
)
|
||||
additional_context: str = Field(
|
||||
...,
|
||||
min_length=20,
|
||||
max_length=500,
|
||||
description="Important context about the verification",
|
||||
)
|
||||
|
||||
|
||||
class FactCheckResponse(BaseModel):
|
||||
claim: str = Field(
|
||||
...,
|
||||
min_length=10,
|
||||
max_length=1000,
|
||||
description="The exact claim being verified",
|
||||
description="The exact claim being verified"
|
||||
)
|
||||
verdict: VerdictEnum = Field(
|
||||
...,
|
||||
description="The verification verdict"
|
||||
)
|
||||
confidence: ConfidenceEnum = Field(
|
||||
...,
|
||||
description="Confidence level in the verdict"
|
||||
)
|
||||
verdict: VerdictEnum = Field(..., description="The verification verdict")
|
||||
confidence: ConfidenceEnum = Field(..., description="Confidence level in the verdict")
|
||||
sources: List[Source] = Field(
|
||||
...,
|
||||
min_items=1,
|
||||
|
|
@ -110,19 +58,19 @@ class FactCheckResponse(BaseModel):
|
|||
...,
|
||||
min_length=20,
|
||||
max_length=500,
|
||||
description="Concise summary of key evidence",
|
||||
description="Concise summary of key evidence"
|
||||
)
|
||||
explanation: str = Field(
|
||||
...,
|
||||
min_length=50,
|
||||
max_length=1000,
|
||||
description="Detailed explanation of verification findings",
|
||||
description="Detailed explanation of verification findings"
|
||||
)
|
||||
additional_context: str = Field(
|
||||
...,
|
||||
min_length=20,
|
||||
max_length=500,
|
||||
description="Important context about the verification",
|
||||
description="Important context about the verification"
|
||||
)
|
||||
|
||||
class Config:
|
||||
|
|
@ -134,16 +82,19 @@ class FactCheckResponse(BaseModel):
|
|||
"sources": [
|
||||
{
|
||||
"url": "https://www.nasa.gov/mars-exploration",
|
||||
"name": "NASA Mars Exploration",
|
||||
"name": "NASA Mars Exploration"
|
||||
},
|
||||
{
|
||||
"url": "https://factcheck.org/2024/mars-claims",
|
||||
"name": "FactCheck.org"
|
||||
}
|
||||
],
|
||||
"evidence": "NASA has made no such announcement. Recent Mars rover images show natural rock formations.",
|
||||
"explanation": "Multiple fact-checking organizations investigated this claim. NASA's official communications and Mars mission reports from 2024 contain no mention of alien structures.",
|
||||
"additional_context": "Similar false claims about alien structures on Mars have circulated periodically.",
|
||||
"explanation": "Multiple fact-checking organizations investigated this claim. NASA's official communications and Mars mission reports from 2024 contain no mention of alien structures. The viral images being shared are misidentified natural geological formations.",
|
||||
"additional_context": "Similar false claims about alien structures on Mars have circulated periodically since the first Mars rovers began sending back images."
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class ErrorResponse(BaseModel):
|
||||
detail: str
|
||||
error_code: str = Field(..., example="VALIDATION_ERROR")
|
||||
|
|
|
|||
|
|
@ -1,46 +1,38 @@
|
|||
from pydantic import BaseModel
|
||||
from typing import List, Dict
|
||||
|
||||
|
||||
class SearchRequest(BaseModel):
|
||||
search_text: str
|
||||
source_types: List[str] = ["fact_checkers"]
|
||||
|
||||
|
||||
class Publisher(BaseModel):
|
||||
name: str
|
||||
site: str
|
||||
|
||||
|
||||
class ClaimReview(BaseModel):
|
||||
publisher: Publisher
|
||||
textualRating: str
|
||||
|
||||
|
||||
class Claim(BaseModel):
|
||||
claimReview: List[ClaimReview]
|
||||
claimant: str
|
||||
text: str
|
||||
|
||||
|
||||
class Summary(BaseModel):
|
||||
fact_checking_sites_queried: int
|
||||
total_sources: int
|
||||
|
||||
|
||||
class TokenUsage(BaseModel):
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
class VerificationResult(BaseModel):
|
||||
verdict: str
|
||||
confidence: str
|
||||
evidence: List[str]
|
||||
reasoning: str
|
||||
|
||||
|
||||
class EnhancedFactCheckResponse(BaseModel):
|
||||
query: str
|
||||
results: List[Claim]
|
||||
|
|
|
|||
|
|
@ -1,119 +0,0 @@
|
|||
import base64
|
||||
import requests
|
||||
import os
|
||||
from io import BytesIO
|
||||
from typing import Tuple, Optional
|
||||
import logging
|
||||
import aiohttp
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class ImageTextExtractor:
|
||||
def __init__(self, api_key: str):
|
||||
"""Initialize ImageTextExtractor with OpenAI API key."""
|
||||
self.api_key = api_key
|
||||
self.api_url = "https://api.openai.com/v1/chat/completions"
|
||||
self.headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
|
||||
def encode_image(self, image_path: str) -> str:
|
||||
"""Encode a local image into base64."""
|
||||
try:
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode('utf-8')
|
||||
except Exception as e:
|
||||
logger.error(f"Error encoding image: {str(e)}")
|
||||
raise Exception(f"Error encoding image: {e}")
|
||||
|
||||
async def fetch_image_from_url(self, image_url: str) -> Tuple[str, str]:
|
||||
"""Fetch an image from a URL and encode it as base64."""
|
||||
try:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(image_url) as response:
|
||||
if response.status != 200:
|
||||
raise Exception(f"Failed to fetch image: Status {response.status}")
|
||||
|
||||
content_type = response.headers.get('Content-Type', '')
|
||||
if "text/html" in content_type:
|
||||
raise ValueError("The URL points to a webpage, not an image")
|
||||
if "image" not in content_type:
|
||||
raise ValueError("The URL does not point to a valid image")
|
||||
|
||||
image_data = await response.read()
|
||||
image_format = "jpeg" if "jpeg" in content_type or "jpg" in content_type else "png"
|
||||
base64_image = base64.b64encode(image_data).decode('utf-8')
|
||||
return base64_image, image_format
|
||||
|
||||
except aiohttp.ClientError as e:
|
||||
logger.error(f"Error fetching image from URL: {str(e)}")
|
||||
raise Exception(f"Error fetching image from URL: {e}")
|
||||
except ValueError as e:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error processing image URL: {str(e)}")
|
||||
raise Exception(f"Unexpected error processing image: {e}")
|
||||
|
||||
async def extract_text(self, image_input: str, is_url: bool = False) -> Optional[str]:
|
||||
"""Extract text from an image, either from a local path or URL."""
|
||||
try:
|
||||
if is_url:
|
||||
try:
|
||||
base64_image, image_format = await self.fetch_image_from_url(image_input)
|
||||
except ValueError as e:
|
||||
if "webpage" in str(e):
|
||||
return None
|
||||
raise
|
||||
else:
|
||||
if not os.path.exists(image_input):
|
||||
raise FileNotFoundError(f"Image file not found: {image_input}")
|
||||
base64_image = self.encode_image(image_input)
|
||||
image_format = "jpeg" if image_input.endswith(".jpg") else "png"
|
||||
|
||||
payload = {
|
||||
"model": "gpt-4-turbo-2024-04-09", # Updated model name
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Extract and return only the key text from this image in the original language. Do not provide translations or explanations."
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/{image_format};base64,{base64_image}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"max_tokens": 300
|
||||
}
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(self.api_url, headers=self.headers, json=payload) as response:
|
||||
if response.status != 200:
|
||||
error_content = await response.text()
|
||||
logger.error(f"API request failed: Status {response.status}, Response: {error_content}")
|
||||
raise Exception(f"API request failed with status {response.status}")
|
||||
|
||||
result = await response.json()
|
||||
logger.debug(f"GPT-4 API Response: {result}")
|
||||
|
||||
if 'choices' in result and len(result['choices']) > 0:
|
||||
extracted_text = result['choices'][0]['message']['content'].strip()
|
||||
if extracted_text:
|
||||
return extracted_text
|
||||
return None
|
||||
|
||||
except (aiohttp.ClientError, ValueError, FileNotFoundError) as e:
|
||||
logger.error(f"Error in text extraction: {str(e)}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error in text extraction: {str(e)}")
|
||||
return None
|
||||
|
||||
return None
|
||||
|
|
@ -1,3 +1,4 @@
|
|||
from langchain_community.document_loaders import AsyncHtmlLoader
|
||||
from langchain_community.document_transformers import BeautifulSoupTransformer
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_core.documents import Document
|
||||
|
|
@ -6,9 +7,6 @@ import numpy as np
|
|||
import logging as logger
|
||||
import openai
|
||||
import json
|
||||
import aiohttp
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
|
||||
class OpenAIClient:
|
||||
def __init__(self, api_key: str):
|
||||
|
|
@ -17,9 +15,7 @@ class OpenAIClient:
|
|||
"""
|
||||
openai.api_key = api_key
|
||||
|
||||
async def generate_text_response(
|
||||
self, system_prompt: str, user_prompt: str, max_tokens: int
|
||||
) -> dict:
|
||||
async def generate_text_response(self, system_prompt: str, user_prompt: str, max_tokens: int) -> dict:
|
||||
"""
|
||||
Generate a response using OpenAI's chat completion API.
|
||||
"""
|
||||
|
|
@ -28,19 +24,19 @@ class OpenAIClient:
|
|||
model="gpt-4",
|
||||
messages=[
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": user_prompt},
|
||||
{"role": "user", "content": user_prompt}
|
||||
],
|
||||
max_tokens=max_tokens,
|
||||
max_tokens=max_tokens
|
||||
)
|
||||
content = response["choices"][0]["message"]["content"]
|
||||
content = response['choices'][0]['message']['content']
|
||||
# Parse the JSON string into a dictionary
|
||||
parsed_content = json.loads(content)
|
||||
|
||||
return {
|
||||
"response": parsed_content, # Now returns a dictionary instead of string
|
||||
"prompt_tokens": response["usage"]["prompt_tokens"],
|
||||
"completion_tokens": response["usage"]["completion_tokens"],
|
||||
"total_tokens": response["usage"]["total_tokens"],
|
||||
"prompt_tokens": response['usage']['prompt_tokens'],
|
||||
"completion_tokens": response['usage']['completion_tokens'],
|
||||
"total_tokens": response['usage']['total_tokens']
|
||||
}
|
||||
except json.JSONDecodeError as e:
|
||||
raise Exception(f"Failed to parse OpenAI response as JSON: {str(e)}")
|
||||
|
|
@ -53,14 +49,14 @@ class OpenAIClient:
|
|||
"""
|
||||
try:
|
||||
response = openai.Embedding.create(
|
||||
input=texts, model="text-embedding-ada-002"
|
||||
input=texts,
|
||||
model="text-embedding-ada-002"
|
||||
)
|
||||
embeddings = [data["embedding"] for data in response["data"]]
|
||||
embeddings = [data['embedding'] for data in response['data']]
|
||||
return embeddings
|
||||
except Exception as e:
|
||||
raise Exception(f"OpenAI embedding error: {str(e)}")
|
||||
|
||||
|
||||
class AIFactChecker:
|
||||
def __init__(self, openai_client: OpenAIClient):
|
||||
"""Initialize the fact checker with OpenAI client."""
|
||||
|
|
@ -69,36 +65,20 @@ class AIFactChecker:
|
|||
chunk_size=1000,
|
||||
chunk_overlap=200,
|
||||
length_function=len,
|
||||
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
|
||||
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
|
||||
)
|
||||
|
||||
async def scrape_webpage(self, url: str) -> List[Document]:
|
||||
"""Scrape webpage content without saving HTML files."""
|
||||
"""Scrape webpage content using LangChain's AsyncHtmlLoader."""
|
||||
try:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(url) as response:
|
||||
if response.status != 200:
|
||||
raise Exception(
|
||||
f"Failed to fetch URL: {url}, status: {response.status}"
|
||||
)
|
||||
loader = AsyncHtmlLoader([url])
|
||||
docs = await loader.aload()
|
||||
|
||||
html_content = await response.text()
|
||||
bs_transformer = BeautifulSoupTransformer()
|
||||
docs_transformed = bs_transformer.transform_documents(docs)
|
||||
docs_chunks = self.text_splitter.split_documents(docs_transformed)
|
||||
|
||||
# Parse HTML with BeautifulSoup
|
||||
soup = BeautifulSoup(html_content, "html.parser")
|
||||
|
||||
# Create a Document with the parsed content
|
||||
doc = Document(
|
||||
page_content=soup.get_text(separator="\n", strip=True),
|
||||
metadata={"source": url},
|
||||
)
|
||||
|
||||
# Split into chunks
|
||||
docs_chunks = self.text_splitter.split_documents([doc])
|
||||
|
||||
logger.info(
|
||||
f"Successfully scraped webpage | chunks={len(docs_chunks)}"
|
||||
)
|
||||
logger.info(f"Successfully scraped webpage | chunks={len(docs_chunks)}")
|
||||
return docs_chunks
|
||||
|
||||
except Exception as e:
|
||||
|
|
@ -109,7 +89,7 @@ class AIFactChecker:
|
|||
self,
|
||||
query_embedding: List[float],
|
||||
doc_embeddings: List[List[float]],
|
||||
docs: List[Document],
|
||||
docs: List[Document]
|
||||
) -> List[Document]:
|
||||
"""Find most relevant document chunks using cosine similarity."""
|
||||
try:
|
||||
|
|
@ -127,9 +107,7 @@ class AIFactChecker:
|
|||
logger.error(f"Error finding relevant chunks | error={str(e)}")
|
||||
raise
|
||||
|
||||
async def verify_fact(
|
||||
self, query: str, relevant_docs: List[Document]
|
||||
) -> Dict[str, Any]:
|
||||
async def verify_fact(self, query: str, relevant_docs: List[Document]) -> Dict[str, Any]:
|
||||
"""Verify fact using OpenAI's API with context from relevant documents."""
|
||||
try:
|
||||
context = "\n\n".join([doc.page_content for doc in relevant_docs])
|
||||
|
|
@ -154,17 +132,12 @@ class AIFactChecker:
|
|||
Analyze the statement based on the provided context and return your response in the specified JSON format."""
|
||||
|
||||
response = await self.openai_client.generate_text_response(
|
||||
system_prompt=system_prompt, user_prompt=user_prompt, max_tokens=800
|
||||
system_prompt=system_prompt,
|
||||
user_prompt=user_prompt,
|
||||
max_tokens=800
|
||||
)
|
||||
|
||||
sources = list(
|
||||
set(
|
||||
[
|
||||
doc.metadata.get("source", "Unknown source")
|
||||
for doc in relevant_docs
|
||||
]
|
||||
)
|
||||
)
|
||||
sources = list(set([doc.metadata.get('source', 'Unknown source') for doc in relevant_docs]))
|
||||
|
||||
return {
|
||||
"verification_result": response["response"], # This is now a dictionary
|
||||
|
|
@ -172,8 +145,8 @@ class AIFactChecker:
|
|||
"token_usage": {
|
||||
"prompt_tokens": response["prompt_tokens"],
|
||||
"completion_tokens": response["completion_tokens"],
|
||||
"total_tokens": response["total_tokens"],
|
||||
},
|
||||
"total_tokens": response["total_tokens"]
|
||||
}
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
|
|
@ -189,9 +162,7 @@ class AIFactChecker:
|
|||
doc_embeddings = self.openai_client.get_embeddings(doc_texts)
|
||||
query_embedding = self.openai_client.get_embeddings([query])
|
||||
|
||||
relevant_docs = self.find_relevant_chunks(
|
||||
query_embedding[0], doc_embeddings, docs
|
||||
)
|
||||
relevant_docs = self.find_relevant_chunks(query_embedding[0], doc_embeddings, docs)
|
||||
verification_result = await self.verify_fact(query, relevant_docs)
|
||||
|
||||
return verification_result
|
||||
|
|
|
|||
Binary file not shown.
|
|
@ -1,12 +1,7 @@
|
|||
from typing import Dict, List
|
||||
import requests
|
||||
from fastapi import HTTPException
|
||||
from app.models.ai_fact_check_models import (
|
||||
FactCheckSource,
|
||||
ErrorResponse,
|
||||
FactCheckRequest,
|
||||
SourceType,
|
||||
)
|
||||
from app.models.ai_fact_check_models import FactCheckSource, ErrorResponse, FactCheckRequest, SourceType
|
||||
|
||||
# Sources configuration with validation
|
||||
SOURCES = {
|
||||
|
|
@ -118,8 +113,8 @@ SOURCES = {
|
|||
"thejournal.ie/factcheck",
|
||||
"journalistsresource.org",
|
||||
"metafact.io",
|
||||
"reporterslab.org/fact-checking",
|
||||
]
|
||||
"reporterslab.org/fact-checking"
|
||||
]
|
||||
],
|
||||
"news_sites": [
|
||||
FactCheckSource(domain=domain, type=SourceType.NEWS_SITE, priority=2)
|
||||
|
|
@ -138,14 +133,16 @@ SOURCES = {
|
|||
"www.risingbd.com/english",
|
||||
"www.dailyindustry.news",
|
||||
"www.bangladeshpost.net",
|
||||
"www.daily-bangladesh.com/english",
|
||||
"www.daily-bangladesh.com/english"
|
||||
]
|
||||
]
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
async def fetch_fact_checks(
|
||||
api_key: str, base_url: str, query: str, site: FactCheckSource
|
||||
api_key: str,
|
||||
base_url: str,
|
||||
query: str,
|
||||
site: FactCheckSource
|
||||
) -> Dict:
|
||||
"""
|
||||
Fetch fact checks from a specific site using the Google Fact Check API
|
||||
|
|
@ -159,7 +156,7 @@ async def fetch_fact_checks(
|
|||
"query": query,
|
||||
"languageCode": "en-US",
|
||||
"reviewPublisherSiteFilter": site.domain,
|
||||
"pageSize": 10,
|
||||
"pageSize": 10
|
||||
}
|
||||
|
||||
response = requests.get(base_url, params=params)
|
||||
|
|
@ -171,18 +168,19 @@ async def fetch_fact_checks(
|
|||
detail=ErrorResponse(
|
||||
detail=f"Error fetching from {site.domain}: {str(e)}",
|
||||
error_code="FACT_CHECK_SERVICE_ERROR",
|
||||
path="/check-facts",
|
||||
).dict(),
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
)
|
||||
except ValueError as e:
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=ErrorResponse(
|
||||
detail=str(e), error_code="CONFIGURATION_ERROR", path="/check-facts"
|
||||
).dict(),
|
||||
detail=str(e),
|
||||
error_code="CONFIGURATION_ERROR",
|
||||
path="/check-facts"
|
||||
).dict()
|
||||
)
|
||||
|
||||
|
||||
def get_all_sources() -> List[FactCheckSource]:
|
||||
"""
|
||||
Get all sources sorted by priority
|
||||
|
|
|
|||
|
|
@ -1,5 +0,0 @@
|
|||
services:
|
||||
backend:
|
||||
build: .
|
||||
container_name: backend-service
|
||||
restart: always
|
||||
BIN
images-test.jpg
BIN
images-test.jpg
Binary file not shown.
|
Before Width: | Height: | Size: 11 KiB |
21
main.py
21
main.py
|
|
@ -7,14 +7,25 @@ from app.config import FRONTEND_URL
|
|||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="Your API Title", description="Your API Description", version="1.0.0"
|
||||
title="Your API Title",
|
||||
description="Your API Description",
|
||||
version="1.0.0"
|
||||
)
|
||||
|
||||
# CORS configuration
|
||||
origins = [
|
||||
FRONTEND_URL,
|
||||
"http://localhost",
|
||||
"http://localhost:5173",
|
||||
"http://0.0.0.0",
|
||||
"http://0.0.0.0:5173",
|
||||
]
|
||||
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"], # Only wildcard
|
||||
allow_credentials=False, # Changed to False to work with wildcard
|
||||
allow_origins=origins,
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
|
@ -33,6 +44,10 @@ app.include_router(fact_check_router, prefix="")
|
|||
app.include_router(aifact_check_router, prefix="")
|
||||
app.include_router(scrap_websites_router, prefix="")
|
||||
|
||||
# Include routers (uncomment and modify as needed)
|
||||
# from routes import some_router
|
||||
# app.include_router(some_router, prefix="/your-prefix", tags=["your-tag"])
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|
||||
|
|
@ -1,88 +1,6 @@
|
|||
aiofiles==24.1.0
|
||||
aiohappyeyeballs==2.4.4
|
||||
aiohttp==3.11.10
|
||||
aiosignal==1.3.2
|
||||
annotated-types==0.7.0
|
||||
anyio==4.7.0
|
||||
attrs==24.3.0
|
||||
beautifulsoup4==4.12.3
|
||||
black==24.10.0
|
||||
certifi==2024.12.14
|
||||
certifi==2024.8.30
|
||||
charset-normalizer==3.4.0
|
||||
click==8.1.7
|
||||
dataclasses-json==0.6.7
|
||||
dnspython==2.7.0
|
||||
email_validator==2.2.0
|
||||
fastapi==0.115.6
|
||||
fastapi-cli==0.0.7
|
||||
flake8==7.1.1
|
||||
frozenlist==1.5.0
|
||||
greenlet==3.1.1
|
||||
gunicorn==23.0.0
|
||||
h11==0.14.0
|
||||
httpcore==1.0.7
|
||||
httptools==0.6.4
|
||||
httpx==0.28.1
|
||||
httpx-sse==0.4.0
|
||||
idna==3.10
|
||||
iniconfig==2.0.0
|
||||
itsdangerous==2.2.0
|
||||
Jinja2==3.1.4
|
||||
jsonpatch==1.33
|
||||
jsonpointer==3.0.0
|
||||
langchain==0.3.12
|
||||
langchain-community==0.3.12
|
||||
langchain-core==0.3.25
|
||||
langchain-text-splitters==0.3.3
|
||||
langsmith==0.2.3
|
||||
markdown-it-py==3.0.0
|
||||
MarkupSafe==3.0.2
|
||||
marshmallow==3.23.1
|
||||
mccabe==0.7.0
|
||||
mdurl==0.1.2
|
||||
multidict==6.1.0
|
||||
mypy-extensions==1.0.0
|
||||
numpy==1.26.4
|
||||
openai==1.23.6
|
||||
orjson==3.10.12
|
||||
packaging==24.2
|
||||
pathspec==0.12.1
|
||||
pillow==11.0.0
|
||||
platformdirs==4.3.6
|
||||
pluggy==1.5.0
|
||||
propcache==0.2.1
|
||||
pycodestyle==2.12.1
|
||||
pydantic==2.10.3
|
||||
pydantic-extra-types==2.10.1
|
||||
pydantic-settings==2.7.0
|
||||
pydantic_core==2.27.1
|
||||
pyflakes==3.2.0
|
||||
Pygments==2.18.0
|
||||
pytest==8.3.4
|
||||
python-dateutil==2.9.0.post0
|
||||
python-dotenv==1.0.1
|
||||
python-json-logger==3.2.1
|
||||
python-multipart==0.0.20
|
||||
PyYAML==6.0.2
|
||||
requests==2.32.3
|
||||
requests-toolbelt==1.0.0
|
||||
rich==13.9.4
|
||||
rich-toolkit==0.12.0
|
||||
shellingham==1.5.4
|
||||
six==1.17.0
|
||||
sniffio==1.3.1
|
||||
soupsieve==2.6
|
||||
SQLAlchemy==2.0.36
|
||||
starlette==0.41.3
|
||||
tenacity==9.0.0
|
||||
tqdm==4.67.1
|
||||
typer==0.15.1
|
||||
typing-inspect==0.9.0
|
||||
typing_extensions==4.12.2
|
||||
ujson==5.10.0
|
||||
urllib3==2.2.3
|
||||
uvicorn==0.34.0
|
||||
uvloop==0.21.0
|
||||
watchfiles==1.0.3
|
||||
websockets==14.1
|
||||
yarl==1.18.3
|
||||
|
|
|
|||
28
search_response_altnews_in.html
Normal file
28
search_response_altnews_in.html
Normal file
File diff suppressed because one or more lines are too long
28
search_response_bbc_com.html
Normal file
28
search_response_bbc_com.html
Normal file
File diff suppressed because one or more lines are too long
28
search_response_en_prothomalo_com.html
Normal file
28
search_response_en_prothomalo_com.html
Normal file
File diff suppressed because one or more lines are too long
|
|
@ -1,18 +0,0 @@
|
|||
from fastapi.testclient import TestClient
|
||||
from main import app
|
||||
|
||||
client = TestClient(app)
|
||||
|
||||
def test_root_endpoint():
|
||||
response = client.get("/")
|
||||
assert response.status_code == 200
|
||||
assert response.json() == {"message": "Welcome to your FastAPI application"}
|
||||
|
||||
def test_health_endpoint():
|
||||
response = client.get("/health")
|
||||
assert response.status_code == 200
|
||||
assert response.json() == {"status": "healthy"}
|
||||
|
||||
def test_cors_headers():
|
||||
response = client.get("/", headers={"Origin": "http://localhost:5173"})
|
||||
assert response.headers["access-control-allow-origin"] == "*"
|
||||
Loading…
Add table
Reference in a new issue